Registration Dossier

Data platform availability banner - registered substances factsheets

Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.

The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.

Diss Factsheets

Administrative data

Description of key information

Sparingly soluble lead compounds do not exhibit irritant or corrosive properties.

Key value for chemical safety assessment

Skin irritation / corrosion

Endpoint conclusion
Endpoint conclusion:
no adverse effect observed (not irritating)

Eye irritation

Endpoint conclusion
Endpoint conclusion:
no adverse effect observed (not irritating)

Respiratory irritation

Endpoint conclusion
Endpoint conclusion:
adverse effect observed (irritating)

Additional information

Read-across approach for lead containing glass, oxide, chemicals:

The test item is covered under the definition "glass". In this context, “glass" is defined as an amorphous, inorganic, transparent, translucent or opaque substance formed by variouspowdery substances (mostly oxides) which are not present as such in the final glass: they are fully integrated into the glass matrix through the melting process and they lose their original characteristics. Thus, the available analytical information is only of quantitative nature without any indication as to elemental composition or structural purposes. Based on the definition under Regulation (EC) No 1907/2006, the test item fulfils the criteria for UVCB substances.

Substance-specific information for the test item glass, oxide, chemicals (water solubility < 100 mg/L) are not available. For this reason, read-across is anticipated to lead monoxide as a moderately soluble lead substance.

This read-across is considered justified and also conservative since lead monoxide (water solubility approx. 700 mg/L at 20°C) is one of the major starting materials (content ranging from approx. 30-80%) for the test item manufacture, and also represents the component of major toxicological concern.

For the substantiation of read-across, solubility tests (T/D and bioaccessibility) were performed with the test item in order to determine the release of lead from the “glass” matrix for a comparison to the solubility of the selected read-across substance.

The following lead concentrations were measured in two T/D tests with the test item with variable lead monoxide concentrations (starting material concentration):

Test material with a PbO content of 38.4%:

After 7 days, the dissolution of Pb ranged from 17.0 ± 1.99 µg/L (pH 8) to 18.7 ± 2.08 µg/L (pH 6).

After 28 days, the dissolution of Pb ranged from 37.8 ± 3.64 µg/L (pH 8) to 60.1 ± 17.2 µg/L (pH 6).

Based on the nominal test item amount, the maximum dissolution of Pb at pH 6 from the test item corresponded to 6.01% (w/w); based on contained lead 5.95% (w/w).

At pH 8, the maximum dissolution of Pb after 24 h based on contained Pb was 3.68 µg/L (1.03% (w/w)).

Test material with a PbO content of 78.0%:

After 7 days, the dissolution of Pb ranged from 53.8 ± 8.53 µg/L (pH 8) to 562 ± 86.1 µg/L (pH 6).

After 28 days, the dissolution of Pb ranged from 110 ± 8.28 µg/L (pH 8) to 684 ± 22.8 µg/L (pH 6).

At pH 6, the maximum dissolution of Pb from the test item was 68.4% (w/w) based on nominal test item loading. Based on contained Pb, the dissolution corresponded to 94.3 % (w/w).

At pH 8, the maximum dissolution of Pb after 24 h based on contained Pb was 29.4 µg/L (4.06 % (w/w)).

In comparison, a water solubility of lead monoxide (saturation solubility, OECD 105; Heintze 2005) of is given with 70.2 mg/L in the REACH registration dossier and in the "Voluntary Risk Assessment for Lead and Lead Compounds"; a T/D screening test at pH = 8 with a 100 mg/L loading revealed an average (+- SD) dissolved Pb concentration after 24 hours of 101 (+-0.003) µg/L.

Based on the above data, the release of Pb fromthe test item glass, oxide, chemicals is substantial, but eithersimilar or lower compared to pure PbO. Thus, read-across to lead monoxide can be considered scientifically justified and sufficiently conservative.

Discussion:

Reliable animal data were found indicating that lead oxide, lead phosphite and dibasic lead phthalate lack irritating properties for the skin or the eyes. The experimental data are reinforced by a lack of reports of skin or eye irritation in the many occupational exposure environments which provide opportunities for exposure of lead and sparingly soluble lead compounds to the skin and eyes. Classification for these endpoints is clearly not needed. Specific studies of lung irritation were not found, but the lack of inhalation toxicity from lead oxide in both acute toxicity testing and inhalation cancer bioassays combine with an absence of reports of lung irritation in occupational settings to suggest classification is not needed.

The substances for which data are available should permit data waiving for a number of other substances. The three tested compounds are all sparingly soluble (and thus unlikely to undergo significant dissolution when applied to the skin, eyes or inhaled. The tested compounds further include one compound with an organic anion and one with an inorganic anion. Literature searches have failed to identify anions in other sparingly soluble substances that would alter the irritant properties of other sparingly soluble lead salts. Finally, dermal, oral and inhalation toxicity studies for lead compounds are uniformly negative and further support a finding of no irritant properties. Data waiving for all irritant classification endpoints should thus be possible for metallic lead and other sparingly soluble lead salts (unless anions are present that literature searches suggest might impart irritating properties.

No studies were found documenting corrosive properties of lead and sparingly soluble lead compounds in either experimental animals or humans. Given the negative findings of acute toxicity and irritation studies and the absence of reports from occupationally exposed workers, corrosive properties are not to be expected of lead or its sparingly soluble compounds.

Effects on respiratory irritation: irritating

Justification for classification or non-classification