Registration Dossier
Registration Dossier
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 272-940-1 | CAS number: 68921-45-9
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data

Endpoint summary
Administrative data
Link to relevant study record(s)
Description of key information
Toxicokinetics assessment as a written paper.
Key value for chemical safety assessment
- Bioaccumulation potential:
- low bioaccumulation potential
- Absorption rate - oral (%):
- 100
- Absorption rate - dermal (%):
- 100
- Absorption rate - inhalation (%):
- 100
Additional information
The results of basic toxicity testing give no reason to anticipate unusual characteristics with regards to the toxicokinetics of the substance. The data indicate that whilst there is the possibility of potential dermal absorption, there are no predicted effects noted from this route. Minor systemic effects associated with absorption potential have been observed following oral ingestion; however, these appear to be adaptive and are negated, following cessation. Bioaccumulation and storage of the material in fatty tissue (adipose cells) of the substance can most probably be excluded due to the predictive assessment of bioaccumulation behaviour using QSAR tools and the known experimental values of the parent substance, diphenylamine. Based on the results of all mutagenicity assays and assessment of relevant literature, a metabolisation towards genotoxic structures can be ruled out. It is proposed that following ingestion, the substance will be hydrolysed in the stomach to more soluble forms, followed by further metabolism via oxidation using standard metabolic mechanisms to carbon dioxide and soluble forms for subsequent elimination.
Taking the results of the sub-acute oral toxicity and developmental toxicity study into account, the substance appears to be absorbed from the gastrointestinal tract as evidenced by the liver and adrenal effects in the higher dose groups. This effect is anticipated, as it is known that the parent substance, diphenylamine is well absorbed from the gastrointestinal tract in man and in several animal species including rat, rabbit, dog and cow. Results for diphenylamine indicate that up to 3 % of the parent compound and approximately 80-90 % of the dose is excreted as 12 different metabolites, which include 4-hydroxydiphenylamine, 4,4’- 2 hydroxydiphenylamine and sulfate and glucuronide conjugates of these hydroxylated metabolites. In addition, indophenol has been identified as metabolite. From these results it can be assumed that a similar mechanism to that employed for diphenylamine is utilised in elimination processes for the substituted diphenylamine group. The substance is proposed to be readily metabolized and excreted and that accumulation seems to be unlikely. There are no data on dermal route of administration or exposure by inhalation. An absorption rate of 100% for the oral route is proposed to be taken for risk characterisation purposes, whereas dermal and inhalation absorption is assumed to be 100% (defaults). The assumption of a default dermal absorption value of 100% is supported by the effects noted in the irritation studies. Due to the potential for absorption and the lack of experimental data, a default absorption value of 100% is also assumed for inhalative uptake.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.
