Registration Dossier
Registration Dossier
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 273-729-7 | CAS number: 69012-29-9 By-product from the production of ferronickel from a complex ore. Consists primarily of oxides of aluminum, iron, magnesium and silicon.
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data

Toxicity to soil macroorganisms except arthropods
Administrative data
Link to relevant study record(s)
Description of key information
In general, it can be said that Slags, ferronickel manufg. do not contain substances that are toxic to the terrestrial environment. Iron, Calcium, Aluminium and Magnesium are common elements that have no toxicity towards terrestrial organisms.Chromiumexistsin its less toxic formofCr(III). A study on the speciation of Chromium in Ferronickel slags using alkaline digestion and colorimetric analysis (EPA 3060A and EPA 7196A respectively) showed that no hexavalent Chromium species were present up to the limit of detection of the analytical method (20mg/kg) so all Cr in the substance is considered to be in trivalent form(NTUA 2011c).
The read-across approach for the available studies has shown that Nickel is the constituent of highest concern, but its toxicity for terrestrial organisms is much lower than its aquatic toxicity.
Additionally, the substance has very low solubility in water (ref.), therefore it poses no risk for plant life and soil microorganisms. Its most soluble components, Calcium and Magnesium, are common nutrients. Other terrestrial organisms that feed directly from the ground are more exposed, but the lack of solubility of the slags in water does not allow them to pass to tissues and cause toxicity. The coarse form of the material’s particles (see granulometry studies) decrease the bioavailability (and the solubility) of the substance to other soil macroorganisms (such as earthworms).
The various constituents of the slags are chemically bound in the mineral matrix of the substance and they do not dissociate readily into ionic form. Ionic forms of elements are more water soluble and, in general, more toxic (locally or systemically) to living organisms. Very low concentrations of nickel and chromium in ionic form indicate that toxicity is highly unlikely.
Key value for chemical safety assessment
- Long-term EC10, LC10 or NOEC for soil macroorganisms:
- 16 667 mg/kg soil dw
Additional information
Data on the toxicity to soil macroorganisms for slags, ferronickel-manufg. is not available for the whole substance. In order to avoid unnecessary testing to animals, it was attempted to identify possible adverse effects based on data for its recognised constituents, even though the results cannot be applied directly, due to the way the constituents are bound in the matrix of the substance and are not as bioavailable as the free substances that are examined. So, the results must be taken into consideration with care.
Data on studies on earthworms is available on some of the constituents of slags, ferronickel-manufg, mainly aluminium oxide and nickel.
Iron Oxides
Iron is amongst the most common elements in the earth’s crust and can be found in great abundance in both the terrestrial and sediment environments. The relative contributions of anthropogenic iron to the existing natural pools of iron in soils and sediments is therefore not relevant either in terms of added amounts or in terms of toxicity (ARCHE, 2010).
Calcium Oxide
CaOeffect on soil is mainly the increase of alkalinity. However land spreading of CaO usually is of insignificant effect due to the large neutralizing capacity of the soil. Furthermore, Calcium Oxide is bound in the mineral matrix of the slags which reduces significantly its reactivity.This has been verified in the acute oral and inhalation toxicity experiments of CS (see respective sections) as well as in the skin and eye irritation experiments. It is concluded that CaO is of negligible toxicity inferronickel slags.
Chromium (III)
Sivakumar and Subbhuraam (2005) examined the effects of trivalent and hexavalent Chromium substances on earthworms (E.fetida). For Cr(III) they resulted in a NOEC of 1635 -1902mg/kg soil, which is significantly high so as to assume that no toxic effect is expected on soil macroorganisms from trivalent Cr species.
Nickel
Nickel (in the form of nickel chloride) is the more toxic constituent and produced adverse effects in a number of experiments. From these, a NOEC was derived for Ni, with a value of 100mg Ni/kg soil dw, which corresponds to a NOEC of 16667mg slag/kg soil dw.
Aluminium Oxide
The tests that were performed with these studies were with their more soluble species, in order to have a good understanding of their toxicological effects. From these studies, it was concluded that aluminium oxide (a constituent of the slag) showed no toxic effects even at the highest concentration of 5000mg/kg dw (at a range of pH values).
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.
