Registration Dossier
Registration Dossier
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 279-368-1 | CAS number: 80019-42-7
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data

Endpoint summary
Administrative data
Key value for chemical safety assessment
Genetic toxicity in vitro
Description of key information
Gene mutation in vitro:
Ames test:
Data available for the structurally and functonally similar read across chemicals was reviewed to determine the mutagenic nature of the test chemical Tetrasodium 3-[[5-[[4-chloro-6-[[3-[[2-(sulphonatooxy)ethyl]sulphonyl]phenyl]amino]-1,3,5-triazin-2-yl]amino]-2-sulphonatophenyl]azo]-4-hydroxy-5- [(1-oxopropyl)amino]naphthalene-2,7-disulphonate. The studies are as mentioned below:
Gene mutation toxicity study was performed to determine the mutagenic nature of the 60 -70% structurally and functionally similar test chemical. Spot test was performed at dose levels from 10-250 mg using Salmonella typhimurium strain TA98, TA1537, TA100, TA1535 with and without S9 metabolic activation system. Captan was used as positive control chemical and the solvent control used was DMSO. Mutagenicity was indicated by a clustering of revertant colonies directly around the test material or at the edge of the inhibitory zone. The test chemical did not induce clustering of revertant colonies directly around the test material or at the edge of the inhibitory zone using Salmonella typhimurium strain TA98, TA1537, TA100, TA1535 in the presence and absence of S9 metabolic activation system and hence is not likely to classify as a gene mutant in vitro.
Gene mutation toxicity study was performed to determine the mutagenic nature of the 60 -70% structurally and functionally similar test chemical. The study was performed as per the plate incorporation assay using Salmonella typhimurium strain TA98, TA1537, TA100, TA1535 with and without S9 metabolic activation system. The 2 ml of liquid top agar was cooled to 45°C and 0.1 ml of a broth cultureof microorganism and test substance in volumes of≤0.4 ml of DMSO was added prior to placing on minimal agar plates. The plates were incubated for 48 h at 37°C and the colonies which reverted to the prototroph were counted and compared to counts on the control plate (containing no test substance) to demonstrate mutagenicity or toxicity. Materials which caused a 2-fold increase of revertants, as compared to the number of spontaneous revertants on the control plates, were denoted as mutagens. Those which reduced the number of revertants were considered inhibitory. The test chemical did not result in a 2-fold increase in the number of revertants as compared to the number of spontaneous revertants on the control plates in Salmonella typhimurium strain TA98, TA1537, TA100, TA1535 in the presence and absence of S9 metabolic activation system and hence is not likely to classify as a gene mutant in vitro.
Gene mutation toxicity study was also performed for another 60 -70% structurally and functoinally similar test chemical to evaluate its mutagenic nature. The study was performed as per the preincubation protocol using Salmonella typhimurium strain TA100, TA1535, TA1537, TA98 both in the presence and absence of S9 metabolic activation system at doses of 0, 100.0, 333.0, 1000.0, 3333.0 or 10000.0 µg/plate. Water was used as the vehicle. The plates were incubated for 48 hrs after 20 mins preincubation before the evaluation of the revertant colonies could be made. The test chemical did not induce mutation in the Salmonella typhimurium strain TA100, TA1535, TA1537, TA98 both in the presence and absence of S9 metabolic activation system and hence the chemical is not likely to classify as a gene mutant in vitro.
Based on the data available for the read across chemicals, the target chemical Tetrasodium 3-[[5-[[4-chloro-6-[[3-[[2-(sulphonatooxy)ethyl]sulphonyl]phenyl]amino]-1,3,5-triazin-2-yl]amino]-2-sulphonatophenyl]azo]-4-hydroxy-5- [(1-oxopropyl)amino]naphthalene-2,7-disulphonate is considered to not induce gene mutation is Salmonella typhimurium strains in the presence and absence of S9 metabolic activation system on the basis of the data available from the structurally and functionally similar read across chemical and hence is not likely to classify as a gene mutant in vitro.
Link to relevant study records
- Endpoint:
- in vitro gene mutation study in bacteria
- Type of information:
- read-across from supporting substance (structural analogue or surrogate)
- Adequacy of study:
- weight of evidence
- Reliability:
- 2 (reliable with restrictions)
- Rationale for reliability incl. deficiencies:
- data from handbook or collection of data
- Remarks:
- experimental data of read across substances
- Justification for type of information:
- Data for the target chemical is summarized based on the structurally and functionally similar read across chemicals
- Reason / purpose for cross-reference:
- read-across source
- Reason / purpose for cross-reference:
- read-across source
- Reason / purpose for cross-reference:
- read-across source
- Qualifier:
- equivalent or similar to guideline
- Guideline:
- OECD Guideline 471 (Bacterial Reverse Mutation Assay)
- Version / remarks:
- RA 1
- Principles of method if other than guideline:
- WoE derived based on the experimental data from structurally and functionally similar read across chemicals
- GLP compliance:
- not specified
- Type of assay:
- bacterial reverse mutation assay
- Target gene:
- Histidine
- Species / strain / cell type:
- S. typhimurium TA 1535, TA 1537, TA 98 and TA 100
- Remarks:
- RA 1 / RA2
- Details on mammalian cell type (if applicable):
- Not applicable
- Additional strain / cell type characteristics:
- other: frame-shift histidine mutants are TA1537 and TA98 and two base-pair substituted histidine mutants are TA1535 and TA100
- Species / strain / cell type:
- S. typhimurium TA 1535, TA 1537, TA 98 and TA 100
- Remarks:
- RA 3
- Details on mammalian cell type (if applicable):
- Not applicable
- Additional strain / cell type characteristics:
- not specified
- Cytokinesis block (if used):
- No data
- Metabolic activation:
- with and without
- Metabolic activation system:
- The microsomal fraction (S9) was prepared from male Sprague-Dawley rats
- Test concentrations with justification for top dose:
- 1. 10-250 mg
2. 10-250 mg
3. 0, 100.0, 333.0, 1000.0, 3333.0, 10000.0 µg/plate - Vehicle / solvent:
- 1. - Vehicle(s)/solvent(s) used: DMSO
- Justification for choice of solvent/vehicle: The chemical was soluble in DMSO
2. - Vehicle(s)/solvent(s) used: DMSO
- Justification for choice of solvent/vehicle: The chemical was soluble in DMSO
3. - Vehicle(s)/solvent(s) used: Water
- Justification for choice of solvent/vehicle: The test chemical was soluble in water - Untreated negative controls:
- not specified
- Negative solvent / vehicle controls:
- not specified
- True negative controls:
- not specified
- Positive controls:
- yes
- Positive control substance:
- other: Captan
- Remarks:
- RA 1
- Untreated negative controls:
- not specified
- Negative solvent / vehicle controls:
- yes
- Remarks:
- DMSO
- True negative controls:
- not specified
- Positive controls:
- not specified
- Positive control substance:
- not specified
- Remarks:
- RA 2
- Untreated negative controls:
- not specified
- Negative solvent / vehicle controls:
- yes
- Remarks:
- Water
- True negative controls:
- not specified
- Positive controls:
- yes
- Positive control substance:
- 9-aminoacridine
- sodium azide
- other: 4-nitro-o-phenylenediamine for TA98 (-S9); 2-aminoanthracene was used with all strains with hamster and rat liver metabolic activation systems.
- Remarks:
- RA 3
- Details on test system and experimental conditions:
- 1. METHOD OF APPLICATION: In agar (Spot test)
DURATION
- Preincubation period: No data
- Exposure duration: No data
- Expression time (cells in growth medium): No data
- Selection time (if incubation with a selection agent): No data
- Fixation time (start of exposure up to fixation or harvest of cells): No data
SELECTION AGENT (mutation assays): No data
SPINDLE INHIBITOR (cytogenetic assays): No data
STAIN (for cytogenetic assays): No data
NUMBER OF REPLICATIONS: No data
NUMBER OF CELLS EVALUATED: No data
DETERMINATION OF CYTOTOXICITY
- Method: mitotic index; cloning efficiency; relative total growth; other: No data
OTHER EXAMINATIONS:
- Determination of polyploidy: No data
- Determination of endoreplication: No data
- Other: No data
OTHER: No data
2. METHOD OF APPLICATION: In agar (plate incorporation)
DURATION
- Preincubation period: No data
- Exposure duration: 48 hrs
- Expression time (cells in growth medium): 48 hrs
- Selection time (if incubation with a selection agent): No data
- Fixation time (start of exposure up to fixation or harvest of cells): No data
SELECTION AGENT (mutation assays): No data
SPINDLE INHIBITOR (cytogenetic assays): No data
STAIN (for cytogenetic assays): No data
NUMBER OF REPLICATIONS: No data
NUMBER OF CELLS EVALUATED: No data
DETERMINATION OF CYTOTOXICITY
- Method: mitotic index; cloning efficiency; relative total growth; other: No data
OTHER EXAMINATIONS:
- Determination of polyploidy: No data
- Determination of endoreplication: No data
- Other: No data
OTHER: No data
3. METHOD OF APPLICATION: preincubation
DURATION
- Preincubation period: 20 mins
- Exposure duration: 48 hr
- Expression time (cells in growth medium): 48 hr
- Selection time (if incubation with a selection agent): No data
- Fixation time (start of exposure up to fixation or harvest of cells): No data
SELECTION AGENT (mutation assays): No data
SPINDLE INHIBITOR (cytogenetic assays): No data
STAIN (for cytogenetic assays): No data
NUMBER OF REPLICATIONS: At least five dose levels of the chemicals were tested, with three plates per dose level.
NUMBER OF CELLS EVALUATED: No data
DETERMINATION OF CYTOTOXICITY
- Method: mitotic index; cloning efficiency; relative total growth; other: No data
OTHER EXAMINATIONS:
- Determination of polyploidy: No data
- Determination of endoreplication: No data
- Other: No data
OTHER: No data - Rationale for test conditions:
- 1. No data
- Evaluation criteria:
- 1. Mutagenicity was indicated by a clustering of revertant colonies directly around the test material or at the edge of the inhibitory zone.
2. The colonies which reverted to the prototroph were counted and compared to counts on the control plate (containing no test substance) to demonstrate mutagenicity or toxicity. Materials which caused a 2-fold increase of revertants, as compared to the number of spontaneous revertants on the control plates, were denoted as
mutagens. Those which reduced the number of revertants were considered inhibitory.
3. 1) mutagenic response: a dose-related, reproducible increase in the number of revertants over background, even if the increase was less than twofold;
2) nomutagenic response: when no increase in the number of revertants was elicited by the chemical;
3) questionable response: when there was an absence of a clear-cut dose-related increase in revertants; when the dose-related increases in the number of revertants were not reproducible; or when the response was of insufficient magnitude to support a determination of mutagenicity - Statistics:
- 1. No data
2. No data
3. Mean and Standard error of mean - Species / strain:
- S. typhimurium, other: TA98, TA1537, TA100, TA1535
- Remarks:
- RA 1
- Metabolic activation:
- with and without
- Genotoxicity:
- not specified
- Cytotoxicity / choice of top concentrations:
- not specified
- Vehicle controls validity:
- not specified
- Untreated negative controls validity:
- not specified
- Positive controls validity:
- valid
- Species / strain:
- S. typhimurium, other: TA98, TA1537, TA100, TA1535
- Remarks:
- RA2
- Metabolic activation:
- with and without
- Genotoxicity:
- negative
- Cytotoxicity / choice of top concentrations:
- not specified
- Vehicle controls validity:
- valid
- Untreated negative controls validity:
- not specified
- Positive controls validity:
- not specified
- Species / strain:
- S. typhimurium, other: TA100, TA1535, TA1537, TA98
- Remarks:
- RA 3
- Metabolic activation:
- with and without
- Genotoxicity:
- negative
- Cytotoxicity / choice of top concentrations:
- not specified
- Vehicle controls validity:
- valid
- Untreated negative controls validity:
- not specified
- Positive controls validity:
- valid
- Additional information on results:
- 1. No data
2. No data
3. TEST-SPECIFIC CONFOUNDING FACTORS
- Effects of pH: No data
- Effects of osmolality: No data
- Evaporation from medium: No data
- Water solubility: No data
- Precipitation: No data
- Other confounding effects: No data
RANGE-FINDING/SCREENING STUDIES: The chemical was initially tested with strain TA100 in the presence and the absence of the metabolic activation systems, over a wide dose range with an upper limit of 10 mg/plate, or less when solubility problems were encountered. Toxicity was evidenced by one or more of the following phenomena: appearance of his+ pinpoint colonies, reduced numbers of revertant colonies per plate, or thinning or absence of the bacterial lawn. Nontoxic chemicals were tested in the initial experiment up to the 10 mg/plate dose level, or to a level determined by their solubility. Toxic chemicals were tested up to a high dose which exhibited some degree of toxicity.
COMPARISON WITH HISTORICAL CONTROL DATA: No data
ADDITIONAL INFORMATION ON CYTOTOXICITY: No data - Remarks on result:
- other: No mutagenic potential
- Conclusions:
- The test chemical Tetrasodium 3-[[5-[[4-chloro-6-[[3-[[2-(sulphonatooxy)ethyl]sulphonyl]phenyl]amino]-1,3,5-triazin-2-yl]amino]-2-sulphonatophenyl]azo]-4-hydroxy-5- [(1-oxopropyl)amino]naphthalene-2,7-disulphonate is considered to not induce gene mutation is Salmonella typhimurium strains in the presence and absence of S9 metabolic activation system on the basis of the data available from the structurally and functionally similar read across chemical and hence is not likely to classify as a gene mutant in vitro.
- Executive summary:
Data available for the structurally and functonally similar read across chemicals was reviewed to determine the mutagenic nature of the test chemical Tetrasodium 3-[[5-[[4-chloro-6-[[3-[[2-(sulphonatooxy)ethyl]sulphonyl]phenyl]amino]-1,3,5-triazin-2-yl]amino]-2-sulphonatophenyl]azo]-4-hydroxy-5- [(1-oxopropyl)amino]naphthalene-2,7-disulphonate. The studies are as mentioned below:
Gene mutation toxicity study was performed to determine the mutagenic nature of the 60 -70% structurally and functionally similar test chemical. Spot test was performed at dose levels from 10-250 mg using Salmonella typhimurium strain TA98, TA1537, TA100, TA1535 with and without S9 metabolic activation system. Captan was used as positive control chemical and the solvent control used was DMSO. Mutagenicity was indicated by a clustering of revertant colonies directly around the test material or at the edge of the inhibitory zone. The test chemical did not induce clustering of revertant colonies directly around the test material or at the edge of the inhibitory zone using Salmonella typhimurium strain TA98, TA1537, TA100, TA1535 in the presence and absence of S9 metabolic activation system and hence is not likely to classify as a gene mutant in vitro.
Gene mutation toxicity study was performed to determine the mutagenic nature of the 60 -70% structurally and functionally similar test chemical. The study was performed as per the plate incorporation assay using Salmonella typhimurium strain TA98, TA1537, TA100, TA1535 with and without S9 metabolic activation system. The 2 ml of liquid top agar was cooled to 45°C and 0.1 ml of a broth cultureof microorganism and test substance in volumes of≤0.4 ml of DMSO was added prior to placing on minimal agar plates. The plates were incubated for 48 h at 37°C and the colonies which reverted to the prototroph were counted and compared to counts on the control plate (containing no test substance) to demonstrate mutagenicity or toxicity. Materials which caused a 2-fold increase of revertants, as compared to the number of spontaneous revertants on the control plates, were denoted as mutagens. Those which reduced the number of revertants were considered inhibitory. The test chemical did not result in a 2-fold increase in the number of revertants as compared to the number of spontaneous revertants on the control plates in Salmonella typhimurium strain TA98, TA1537, TA100, TA1535 in the presence and absence of S9 metabolic activation system and hence is not likely to classify as a gene mutant in vitro.
Gene mutation toxicity study was also performed for another 60 -70% structurally and functoinally similar test chemical to evaluate its mutagenic nature. The study was performed as per the preincubation protocol using Salmonella typhimurium strain TA100, TA1535, TA1537, TA98 both in the presence and absence of S9 metabolic activation system at doses of 0, 100.0, 333.0, 1000.0, 3333.0 or 10000.0 µg/plate. Water was used as the vehicle. The plates were incubated for 48 hrs after 20 mins preincubation before the evaluation of the revertant colonies could be made. The test chemical did not induce mutation in the Salmonella typhimurium strain TA100, TA1535, TA1537, TA98 both in the presence and absence of S9 metabolic activation system and hence the chemical is not likely to classify as a gene mutant in vitro.
Based on the data available for the read across chemicals, the target chemical Tetrasodium 3-[[5-[[4-chloro-6-[[3-[[2-(sulphonatooxy)ethyl]sulphonyl]phenyl]amino]-1,3,5-triazin-2-yl]amino]-2-sulphonatophenyl]azo]-4-hydroxy-5- [(1-oxopropyl)amino]naphthalene-2,7-disulphonate is considered to not induce gene mutation is Salmonella typhimurium strains in the presence and absence of S9 metabolic activation system on the basis of the data available from the structurally and functionally similar read across chemical and hence is not likely to classify as a gene mutant in vitro.
Reference
Endpoint conclusion
- Endpoint conclusion:
- no adverse effect observed (negative)
Genetic toxicity in vivo
Endpoint conclusion
- Endpoint conclusion:
- no study available
Additional information
Gene mutation in vitro:
Data available for the structurally and functonally similar read across chemicals was reviewed to determine the mutagenic nature of the test chemical Tetrasodium 3-[[5-[[4-chloro-6-[[3-[[2-(sulphonatooxy)ethyl]sulphonyl]phenyl]amino]-1,3,5-triazin-2-yl]amino]-2-sulphonatophenyl]azo]-4-hydroxy-5- [(1-oxopropyl)amino]naphthalene-2,7-disulphonate. The studies are as mentioned below:
Gene mutation toxicity study was performed to determine the mutagenic nature of the 60 -70% structurally and functionally similar test chemical. Spot test was performed at dose levels from 10-250 mg using Salmonella typhimurium strain TA98, TA1537, TA100, TA1535 with and without S9 metabolic activation system. Captan was used as positive control chemical and the solvent control used was DMSO. Mutagenicity was indicated by a clustering of revertant colonies directly around the test material or at the edge of the inhibitory zone. The test chemical did not induce clustering of revertant colonies directly around the test material or at the edge of the inhibitory zone using Salmonella typhimurium strain TA98, TA1537, TA100, TA1535 in the presence and absence of S9 metabolic activation system and hence is not likely to classify as a gene mutant in vitro.
Gene mutation toxicity study was performed to determine the mutagenic nature of the 60 -70% structurally and functionally similar test chemical. The study was performed as per the plate incorporation assay using Salmonella typhimurium strain TA98, TA1537, TA100, TA1535 with and without S9 metabolic activation system. The 2 ml of liquid top agar was cooled to 45°C and 0.1 ml of a broth cultureof microorganism and test substance in volumes of≤0.4 ml of DMSO was added prior to placing on minimal agar plates. The plates were incubated for 48 h at 37°C and the colonies which reverted to the prototroph were counted and compared to counts on the control plate (containing no test substance) to demonstrate mutagenicity or toxicity. Materials which caused a 2-fold increase of revertants, as compared to the number of spontaneous revertants on the control plates, were denoted as mutagens. Those which reduced the number of revertants were considered inhibitory. The test chemical did not result in a 2-fold increase in the number of revertants as compared to the number of spontaneous revertants on the control plates in Salmonella typhimurium strain TA98, TA1537, TA100, TA1535 in the presence and absence of S9 metabolic activation system and hence is not likely to classify as a gene mutant in vitro.
Gene mutation toxicity study was also performed for another 60 -70% structurally and functoinally similar test chemical to evaluate its mutagenic nature. The study was performed as per the preincubation protocol using Salmonella typhimurium strain TA100, TA1535, TA1537, TA98 both in the presence and absence of S9 metabolic activation system at doses of 0, 100.0, 333.0, 1000.0, 3333.0 or 10000.0 µg/plate. Water was used as the vehicle. The plates were incubated for 48 hrs after 20 mins preincubation before the evaluation of the revertant colonies could be made. The test chemical did not induce mutation in the Salmonella typhimurium strain TA100, TA1535, TA1537, TA98 both in the presence and absence of S9 metabolic activation system and hence the chemical is not likely to classify as a gene mutant in vitro.
Based on the data available for the read across chemicals, the target chemical Tetrasodium 3-[[5-[[4-chloro-6-[[3-[[2-(sulphonatooxy)ethyl]sulphonyl]phenyl]amino]-1,3,5-triazin-2-yl]amino]-2-sulphonatophenyl]azo]-4-hydroxy-5- [(1-oxopropyl)amino]naphthalene-2,7-disulphonate (CAS no 80019 -42 -7) is considered to not induce gene mutation is Salmonella typhimurium strains in the presence and absence of S9 metabolic activation system on the basis of the data available from the structurally and functionally similar read across chemical and hence is not likely to classify as a gene mutant in vitro.
Justification for classification or non-classification
Based on the data available for the read across chemicals, the target chemical Tetrasodium 3-[[5-[[4-chloro-6-[[3-[[2-(sulphonatooxy)ethyl]sulphonyl]phenyl]amino]-1,3,5-triazin-2-yl]amino]-2-sulphonatophenyl]azo]-4-hydroxy-5- [(1-oxopropyl)amino]naphthalene-2,7-disulphonate (CAS no 80019 -42 -7) is considered to not induce gene mutation is Salmonella typhimurium strains in the presence and absence of S9 metabolic activation system on the basis of the data available from the structurally and functionally similar read across chemical and hence is not likely to classify as a gene mutant in vitro.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.
