Registration Dossier
Registration Dossier
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 233-069-2 | CAS number: 10028-15-6
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data

Genetic toxicity: in vitro
Administrative data
- Endpoint:
- in vitro gene mutation study in bacteria
- Type of information:
- experimental study
- Adequacy of study:
- weight of evidence
- Reliability:
- 2 (reliable with restrictions)
- Rationale for reliability incl. deficiencies:
- study well documented, meets generally accepted scientific principles, acceptable for assessment
Data source
Reference
- Reference Type:
- publication
- Title:
- Ozone Is Mutagenic in Salmonella
- Author:
- Dillon D. et al.
- Year:
- 1 992
- Bibliographic source:
- Environmental and Molecular Mutagenesis 19, 331-337
Materials and methods
Test guideline
- Qualifier:
- equivalent or similar to guideline
- Guideline:
- OECD Guideline 471 (Bacterial Reverse Mutation Assay)
- Deviations:
- yes
- Remarks:
- see box " Principles of method if other than guideline"
- Principles of method if other than guideline:
- A standard Ames test was modified for gasvapour exposure. The petri dishes were exposed to an atmosphere containing ozone for 35 minutes.
- GLP compliance:
- no
- Type of assay:
- bacterial reverse mutation assay
Test material
- Reference substance name:
- Ozone
- EC Number:
- 233-069-2
- EC Name:
- Ozone
- Cas Number:
- 10028-15-6
- Molecular formula:
- O3
- IUPAC Name:
- trioxygen
- Test material form:
- gas
Constituent 1
- Specific details on test material used for the study:
- Ozone was produced using an Ozone Generator, Type GLX, machine (Argentox, Hamburg, Germany) operating via an electrical discharge in dry oxygen. Different concentrations of ozone were achieved by regulating the flow rate of oxygen used as support gas and by varying the voltage. Ozone output was determined by titrating the iodine liberated from a solution of KI buffered with Na2HPO4 and KH2PO4 using standardised sodium thiosulphate.
Method
- Target gene:
- Histidine locus
Species / strain
- Species / strain / cell type:
- S. typhimurium, other: TA 1535, TA 98, TA 100, TA102, TA104
- Details on mammalian cell type (if applicable):
- CELLS USED
- Source of cells: Prof. Bruce N. Ames (University of California, Berkeley)
MEDIA USED
- Nutrient medium: Oxoid No.2
- Top agar used to overlay Vogel-Bonner plates
- Metabolic activation:
- with and without
- Metabolic activation system:
- S9 mix
- Test concentrations with justification for top dose:
- 6 concentrations per experiment ranging between 0.019 and 9 ppm.
- Vehicle / solvent:
- oxygen
Controls
- Untreated negative controls:
- yes
- Remarks:
- air
- Negative solvent / vehicle controls:
- yes
- Remarks:
- oxygen gas
- True negative controls:
- no
- Positive controls:
- yes
- Positive control substance:
- 2-nitrofluorene
- sodium azide
- methylmethanesulfonate
- mitomycin C
- other: 2-Aminoanthracene (all strains, 1µg/plate, +S9) and formaldehyde (TA104, 50 µg/plate, -S9)
- Details on test system and experimental conditions:
- The standard plate incorporation protocol by Maron and Ames, 1983 were followed. Overnight bacterial culture (0.1 mL) and S9 mix or 0.05 M phosphate buffer, pH 7.4 (0.5 mL) were added to top agar (2.0 mL), mixed, and used to overlay Vogel-Bonner plates (3 plates per concentration). Cells were exposed on the plates stacked in glass jars of known volume with tapped, ground glass lids. Petri plate lids were slightly raised by the insertion of foil clips to facilitate circulation of the gas. All treatments comprised application of generator voltage for 5 min, after which time the jars were sealed to maintain ozone atmospheres for an additional 30 min. At the conclusion of this period, the residual ozone was purged with air. Plates were incubated at 37 °C for 2 days in the jars and then for an additional day outside the jars. Colonies were counted with a Biotran III colony counter. Qualitative indications of toxicity were obtained from the extent of background growth. Concurrent negative controls were performed by exposing cells, as for ozone, to the oxygen support gas with the generator switched off, or to air, with the gas flow set to zero. In total 6 experiments were conducted. Experiment 1-4 were conducted with an flow rate of 5 L/min and experiments 5 and 6 were conducted at flow rates of 7 L/min. Dosimetry was undertaken concurrently with each experiment.
- Evaluation criteria:
- Values significantly different (p< 0.01) from respective air controls (Dunnett's t-test) were regarded a positive response.
- Statistics:
- The parametric method of Dunnett (1955), involving calculation of the Student's t-statistic and a nonparametric, ranking procedure [Wahrendorf et al., 1985] were applied.
Results and discussion
Test resultsopen allclose all
- Species / strain:
- S. typhimurium, other: TA1535, TA98 and TA100 and TA 104
- Metabolic activation:
- with and without
- Genotoxicity:
- negative
- Cytotoxicity / choice of top concentrations:
- cytotoxicity
- Vehicle controls validity:
- valid
- Untreated negative controls validity:
- valid
- Positive controls validity:
- valid
- Species / strain:
- S. typhimurium, other: TA102
- Metabolic activation:
- with and without
- Genotoxicity:
- positive
- Cytotoxicity / choice of top concentrations:
- cytotoxicity
- Remarks:
- at the two top doses (7.04 and 3.62 ppm)
- Vehicle controls validity:
- valid
- Untreated negative controls validity:
- valid
- Positive controls validity:
- valid
- Additional information on results:
- Ozone was consistently non-mutagenic to strains TA1535, TA98, and TA100 and induced a slight but non reproducible and generally statistically non-significant increase in revertants of TA104 at a single concentration (not the high dose) and only in one experiment (maximum fold increase of 1.2 in comparison to control). Reproducible and statistically significant increases (p< 0.01) in revertant counts with TA102 were, induced at 0.022, 0.036, and 0.59 ppm ozone (Fig 2 below). In most experiments, mutagenicity was unaffected by the presence or absence of S9. Maximum fold increases of 3.1 over air controls were obtained with 0.19 ppm ozone, and small increases in revertants were recorded in separate experiments for the mean dose of 0.022 ppm, and over the range 0.019 to 0.22 ppm ozone. With higher concentrations, however, almost linear decreases in revertants occurred, probably due to toxicity, which was manifest as a reduction in the number of his+ revertants per plate and/or as a thinning of the background lawn at the highest dose levels. However, dose-related responses were not always obtained.
- Remarks on result:
- other: no dose response occurred
Applicant's summary and conclusion
- Conclusions:
- In conclusion, the test item is considered overall as not genotoxic in the bacterial reverse mutation assay in the presence and absence of mammalian metabolic activation.
- Executive summary:
In a modified reverse gene mutation assay in bacteria (similar to OECD 471) strains of S. typhimurium (TA1535, TA104, TA102, TA100 and TA98) were exposed to Ozone at six concentrations/experiment ranging from of 0.019 to 9 ppm in the presence and absence of mammalian metabolic activation for a total exposure time of 35 minutes. Positive controls induced the appropriate responses in the corresponding strains. There was no evidence of induced mutant colonies over background, except for strain 102. This strain is known for its sensitivity against oxygen radicals. Ozone, at two to three consecutive doses, induced weak, albeit statistically significant mutagenic responses with and without S9. But, these effects were not dose related and occurred only at the lower concentrations. Higher concentrations, which were not identified as toxic, showed revertant levels similar to the concurrent control. Moreover, a certain variance occured between the different experiments. Based on the results, ozone is not genotoxic in tester strains TA98, TA100, TA104 and TA1535 with and without metabolic activation. Ambigious results were obtained with tester strain TA102.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.
