Registration Dossier
Registration Dossier
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 240-834-4 | CAS number: 16803-97-7
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data

Biodegradation in water: screening tests
Administrative data
Link to relevant study record(s)
- Endpoint:
- biodegradation in water: screening test, other
- Type of information:
- experimental study
- Adequacy of study:
- key study
- Reliability:
- 2 (reliable with restrictions)
- Rationale for reliability incl. deficiencies:
- other: Data is from peer reveiwed journal
- Justification for type of information:
- Data is from peer reveiwed journal
- Qualifier:
- according to guideline
- Guideline:
- ISO DIS 9408 (Ultimate Aerobic Biodegradability - Method by Determining the Oxygen Demand in a Closed Respirometer)
- Principles of method if other than guideline:
- Determination of percentage degradation of chemical 4-amino-N-(4aminophenyl)benzenesulphonamide by using parameter BOD.
- GLP compliance:
- not specified
- Specific details on test material used for the study:
- - Name of test material : 4-amino-N-(4aminophenyl)benzenesulphonamide
- Molecular formula : C12H13N3O2S
- Molecular weight : 263.32 g/mol
- Smiles notation : O=S(=O)(c1ccc(cc1)Nc1ccc(cc1)N)N
- InChl : 1S/C12H13N3O2S/c13-9-1-3-10(4-2-9)15-11-5-7-12(8-6-11)18(14,16)17/h1-8,15H,13H2,(H2,14,16,17)
- Substance type : Organic
- Physical state : odorless and
white or slightly colored powders
- Analytical purity: > 99%
- Impurities: <1%
- Purchased chemical: Merck - Oxygen conditions:
- aerobic
- Inoculum or test system:
- activated sludge, non-adapted
- Details on inoculum:
- The test were performed with activated sludge from the primary aeration tank at a pilot scale activated sludge sewage treatment plant receiving municipal wastewater (Institute of Environmental Science and Technology, Lyngby, Denmark). Preconditioning of the sludge began within 1 h of collection. Preconditioning (aeration) took 20 to 24 h at room temperature.
- Duration of test (contact time):
- 28 d
- Initial conc.:
- 40 mg/L
- Parameter followed for biodegradation estimation:
- other: BOD
- Details on study design:
- - Culturing apparatus: Oxytop respirometer
- Reference substance:
- other: Sodium acetate
- Key result
- Parameter:
- other: BOD
- Value:
- 0
- Sampling time:
- 28 d
- Remarks on result:
- other: Nonbiodegradable
- Details on results:
- No degradation was observed by the parameter BOD in 28 days.
- Results with reference substance:
- readily biodegradable
- Validity criteria fulfilled:
- not specified
- Interpretation of results:
- under test conditions no biodegradation observed
- Conclusions:
- After the exposure of chemical with the activated sludge, no degradation was observed in the 28 days by using the parameter BOD.
- Executive summary:
Determination of percentage degradation of chemical 4-amino-N-(4aminophenyl)benzenesulphonamide by using parameter BOD. The test were performed with activated sludge from the primary aeration tank at a pilot scale activated sludge sewage treatment plant receiving municipal wastewater (Institute of Environmental Science and Technology, Lyngby, Denmark). Preconditioning of the sludge began within 1 h of collection. Preconditioning (aeration) took 20 to 24 h at room temperature. Actual test was performed in the
Screening tests were performed according to the guidelines in ISO 9408. The tests were performed in Oxytopt respirometers for measurement of biochemical oxygen
demand. Sodium acetate was used as a readily biodegradable reference compound. All compounds were tested in duplicates at concentrations corresponding to theoretical oxygen Demands of 40 mg/L. After the exposure of chemical with the activated sludge, no degradation was observed in the 28 days by using the parameter BOD.
Reference
Description of key information
Determination of percentage degradation of chemical 4-amino-N-(4aminophenyl)benzenesulphonamide by using parameter BOD. The test were performed with activated sludge from the primary aeration tank at a pilot scale activated sludge sewage treatment plant receiving municipal wastewater (Institute of Environmental Science and Technology, Lyngby, Denmark). Preconditioning of the sludge began within 1 h of collection. Preconditioning (aeration) took 20 to 24 h at room temperature. Actual test was performed in the
Screening tests were performed according to the guidelines in ISO 9408. The tests were performed in Oxytopt respirometers for measurement of biochemical oxygen demand. Sodium acetate was used as a readily biodegradable reference compound. All compounds were tested in duplicates at concentrations corresponding to theoretical oxygen Demands of 40 mg/L. After the exposure of chemical with the activated sludge, no degradation was observed in the 28 days by using the parameter BOD.
Key value for chemical safety assessment
- Biodegradation in water:
- under test conditions no biodegradation observed
Additional information
Various experimental data for the target compound 4-amino-N-(4aminophenyl)benzenesulphonamide (CAS No. 16803-97-7) and supporting studies for its closest read across substance with structurally and functionally similar with the target chemical were reviewed for the biodegradation end point which are summarized as below:
In the first key experimental studies for the target chemical 4-amino-N-(4aminophenyl)benzene-sulphonamide (CAS No. 16803-97-7) (from Environmental Toxicology and Chemistry, 2000) degradation was measured. Determination of percentage degradation of chemical 4-amino-N-(4aminophenyl)benzenesulphonamide by using parameter BOD. The test were performed with activated sludge from the primary aeration tank at a pilot scale activated sludge sewage treatment plant receiving municipal wastewater (Institute of Environmental Science and Technology, Lyngby, Denmark). Preconditioning of the sludge began within 1 h of collection. Preconditioning (aeration) took 20 to 24 h at room temperature. Actual test was performed in the Screening tests were performed according to the guidelines in ISO 9408. The tests were performed in Oxytopt respirometers for measurement of biochemical oxygen demand. Sodium acetate was used as a readily biodegradable reference compound. All compounds were tested in duplicates at concentrations corresponding to theoretical oxygen Demands of 40 mg/L. After the exposure of chemical with the activated sludge, no degradation was observed in the 28 days by using the parameter BOD.
In another prediction using the Estimation Programs Interface Suite (EPI suite, 2017), the biodegradation potential of the test compound 4-amino-N-(4-aminophenyl)benzenesulphonamide (CAS no. 16803 -97 -7) in the presence of mixed populations of environmental microorganisms. The biodegradability of the substance was calculated using seven different models such as Linear Model, Non-Linear Model, Ultimate Biodegradation Timeframe, Primary Biodegradation Timeframe, MITI Linear Model, MITI Non-Linear Model and Anaerobic Model (called as Biowin 1-7, respectively) of the BIOWIN v4.10 software. The results indicate that chemical 4-amino-N-(4-aminophenyl)benzenesulphonamide is expected to be not readily biodegradable.
Similarly in the second experimental studies for the target chemical 4-amino-N-(4aminophenyl)benzene-sulphonamide (CAS No. 16803-97-7) (from Environmental Toxicology and Chemistry, 2000) degradation was measured. Determination of percentage degradation of chemical 4-amino-N-(4aminophenyl) benzenesulphonamide by using parameter % degradation. The test were performed with activated sludge from the primary aeration tank at a pilot scale activated sludge sewage treatment plant receiving municipal wastewater (Institute of Environmental Science and Technology, Lyngby, Denmark). Preconditioning of the sludge began within 1 h of collection. Preconditioning (aeration) took 20 to 24 h at room temperature. As the bacteria was sensitive to the chemical in the first exposure, thus various exposure was provide to the bacteria so that bacteria becomes adapted to the chemical and become resistance for the chemical. In the second series of experiment adapted activated sludge expose to the chemical, chemical degradation was observed. Bacteria during the lag period has acquired general properties needed for degradation of several sulfonamides. After the exposure of chemical with the adapted activated sludge, it degrade the chemical 4-amino-N-(4aminophenyl)benzenesulphonamide 50% in 0.3 days. Thus the % degradation was 0.3 days which indicates that the chemical was readily biodegradable.
In a supporting study from authoritative database (J-CHECK, HSDB, 2017 and EnviChem, 2014) for the read across chemical 4, 4’- diaminodiphenylmethane (CAS no. 101-77-9), biodegradation experiment was conducted for 28 days for evaluating the percentage biodegradability of read across substance 4, 4’- diaminodiphenylmethane (CAS no. 101-77-9). The study was performed according to OECD Guideline 301 C (Ready Biodegradability: Modified MITI Test (I)) under aerobic conditions. Concentration of inoculum i.e, sludge used was 30 mg/l and initial test substance conc. used in the study was 100 mg/l, respectively. The percentage degradation of read across substance 4, 4’- diaminodiphenylmethane was determined to be 0 and 5% by BOD, TOC removal and HPLC parameter in 28 days. Thus, based on percentage degradation, 4, 4’- diaminodiphenylmethane is considered to be not readily biodegradable in nature.
Another biodegradation study was conducted for 28 days for evaluating the percentage biodegradability of read across substance 1,4-diaminobenzene (CAS no. 106-50-3) (J-CHECK, 2017). Concentration of inoculum i.e, sludge used was 30 mg/l and initial test substance conc. used in the study was 100 mg/l, respectively. The percentage degradation of substance 1,4 -diamino benzene was determined to be 5% by BOD parameter in 28 days. Thus, based on percentage degradation,1,4-diaminobenzene is considered to be not readily biodegradable in nature.
As in the third study adapted activated sludge was used in the study thus bacteria become resistant and degrade the chemical, but without adaptation bacteria does not degrade chemical. Thus On the basis of above results for target chemical 4-amino-N-(4aminophenyl)benzenesulphonamide (CAS No. 16803-97-7) (from Environmental Toxicology and Chemistry, 2000 and EPI suite, 2017) and for its read across substance authoritative from database J-CHECK, HSDB, 2017 and EnviChem, 2014, it can be concluded that the test substance 4-amino-N-(4aminophenyl)benzenesulphonamide can be expected to be not readily biodegradable in nature.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.
