Registration Dossier

Data platform availability banner - registered substances factsheets

Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.

The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.

Diss Factsheets

Environmental fate & pathways

Biodegradation in water: screening tests

Currently viewing:

Administrative data

Link to relevant study record(s)

Reference
Endpoint:
biodegradation in water: screening tests
Type of information:
(Q)SAR
Adequacy of study:
weight of evidence
Reliability:
2 (reliable with restrictions)
Rationale for reliability incl. deficiencies:
results derived from a valid (Q)SAR model and falling into its applicability domain, with limited documentation / justification
Justification for type of information:
The supporting QMRF report has been attached.
Guideline:
OECD Guideline 301 C (Ready Biodegradability: Modified MITI Test (I))
Principles of method if other than guideline:
The prediction was done by Using OECD QSAR tool box v3.3
GLP compliance:
not specified
Specific details on test material used for the study:
- Name of the test material: 7-acetamido-4-hydroxy-3-[(E)-2-{4-[2-(sulfooxy)ethanesulfonyl]phenyl}diazen-1-yl]naphthalene-2-sulfonic acid
- IUPAC name: 7-acetamido-4-hydroxy-3-[(E)-2-{4-[2-(sulfooxy)ethanesulfonyl]phenyl}diazen-1-yl]naphthalene-2-sulfonic acid
- Molecular formula: C20H19N3O11S3
- Molecular weight: 573.578 g/mol
- Smiles: c1c(c(c(c2ccc(cc12)NC(=O)C)O)\N=N\c1ccc(cc1)S(=O)(=O)CCOS(=O)(=O)O)S(=O)(=O)O
-InChI:1S/C20H19N3O11S3/c1-12(24)21-15-4-7-17-13(10-15)11-18(36(28,29)30)19(20(17)25)23-22-14-2-5-16(6-3-14)35(26,27)9-8-34-37(31,32)33/h2-7,10-11,25H,8-9H2,1H3,(H,21,24)(H,28,29,30)(H,31,32,33)/b23-22+
- Substance type: Organic
- Physical state: Solid
Oxygen conditions:
aerobic
Duration of test (contact time):
28 d
Parameter followed for biodegradation estimation:
other: BOD
Key result
Parameter:
other: % biodegradation (BOD)
Value:
1.8
Sampling time:
28 d
Remarks on result:
other: other details not available
Details on results:
The test chemical 7-acetamido-4-hydroxy-3-[(E)-2-{4-[2-(sulfooxy)ethanesulfonyl]phenyl}diazen-1-yl]naphthalene-2-sulfonic acid showed 1.7 % degradation by considering BOD as parameter in 28 days.

The prediction was based on dataset comprised from the following descriptors: BOD
Estimation method: Takes average value from the 5 nearest neighbours
Domain  logical expression:Result: In Domain

(((((("a" or "b" or "c" or "d" )  and ("e" and ( not "f") )  )  and "g" )  and ("h" and ( not "i") )  )  and ("j" and ( not "k") )  )  and ("l" and "m" )  )

Domain logical expression index: "a"

Referential boundary: The target chemical should be classified as Vinyl Sulfones by US-EPA New Chemical Categories

Domain logical expression index: "b"

Referential boundary: The target chemical should be classified as Acylation AND Acylation >> Ester aminolysis AND Acylation >> Ester aminolysis >> Amides by Protein binding by OASIS v1.3

Domain logical expression index: "c"

Referential boundary: The target chemical should be classified as Acylation AND Acylation >> Direct Acylation Involving a Leaving group AND Acylation >> Direct Acylation Involving a Leaving group >> Acetates by Protein binding by OECD

Domain logical expression index: "d"

Referential boundary: The target chemical should be classified as Acid moiety AND Amides AND Phenol Amines AND Phenols by Aquatic toxicity classification by ECOSAR

Domain logical expression index: "e"

Referential boundary: The target chemical should be classified as No alert found by DNA binding by OASIS v.1.3

Domain logical expression index: "f"

Referential boundary: The target chemical should be classified as AN2 OR AN2 >>  Michael-type addition, quinoid structures OR AN2 >>  Michael-type addition, quinoid structures >> Quinones OR AN2 >> Michael-type addition on alpha, beta-unsaturated carbonyl compounds OR AN2 >> Michael-type addition on alpha, beta-unsaturated carbonyl compounds >> Four- and Five-Membered Lactones OR AN2 >> Schiff base formation by aldehyde formed after metabolic activation OR AN2 >> Schiff base formation by aldehyde formed after metabolic activation >> Geminal Polyhaloalkane Derivatives OR AN2 >> Shiff base formation after aldehyde release OR AN2 >> Shiff base formation after aldehyde release >> Specific Acetate Esters OR AN2 >> Shiff base formation for aldehydes OR AN2 >> Shiff base formation for aldehydes >> Geminal Polyhaloalkane Derivatives OR Non-covalent interaction OR Non-covalent interaction >> DNA intercalation OR Non-covalent interaction >> DNA intercalation >> Amino Anthraquinones OR Non-covalent interaction >> DNA intercalation >> Coumarins OR Non-covalent interaction >> DNA intercalation >> DNA Intercalators with Carboxamide Side Chain OR Non-covalent interaction >> DNA intercalation >> Fused-Ring Primary Aromatic Amines OR Non-covalent interaction >> DNA intercalation >> Quinones OR Radical OR Radical >> Generation of ROS by glutathione depletion (indirect) OR Radical >> Generation of ROS by glutathione depletion (indirect) >> Haloalkanes Containing Heteroatom OR Radical >> Radical mechanism via ROS formation (indirect) OR Radical >> Radical mechanism via ROS formation (indirect) >> Amino Anthraquinones OR Radical >> Radical mechanism via ROS formation (indirect) >> Coumarins OR Radical >> Radical mechanism via ROS formation (indirect) >> Fused-Ring Primary Aromatic Amines OR Radical >> Radical mechanism via ROS formation (indirect) >> Geminal Polyhaloalkane Derivatives OR Radical >> Radical mechanism via ROS formation (indirect) >> Nitro Azoarenes OR Radical >> Radical mechanism via ROS formation (indirect) >> Quinones OR Radical >> Radical mechanism via ROS formation (indirect) >> Single-Ring Substituted Primary Aromatic Amines OR SN1 OR SN1 >> Nucleophilic attack after carbenium ion formation OR SN1 >> Nucleophilic attack after carbenium ion formation >> Specific Acetate Esters OR SN1 >> Nucleophilic attack after metabolic nitrenium ion formation OR SN1 >> Nucleophilic attack after metabolic nitrenium ion formation >> Amino Anthraquinones OR SN1 >> Nucleophilic attack after metabolic nitrenium ion formation >> Fused-Ring Primary Aromatic Amines OR SN1 >> Nucleophilic attack after metabolic nitrenium ion formation >> Single-Ring Substituted Primary Aromatic Amines OR SN1 >> Nucleophilic attack after reduction and nitrenium ion formation OR SN1 >> Nucleophilic attack after reduction and nitrenium ion formation >> Nitro Azoarenes OR SN2 OR SN2 >> Acylation OR SN2 >> Acylation >> Specific Acetate Esters OR SN2 >> Acylation involving a leaving group  OR SN2 >> Acylation involving a leaving group  >> Geminal Polyhaloalkane Derivatives OR SN2 >> Acylation involving a leaving group after metabolic activation OR SN2 >> Acylation involving a leaving group after metabolic activation >> Geminal Polyhaloalkane Derivatives OR SN2 >> Alkylation, ring opening SN2 reaction OR SN2 >> Alkylation, ring opening SN2 reaction >> Four- and Five-Membered Lactones OR SN2 >> Direct acting epoxides formed after metabolic activation OR SN2 >> Direct acting epoxides formed after metabolic activation >> Coumarins OR SN2 >> DNA alkylation OR SN2 >> DNA alkylation >> Alkylphosphates, Alkylthiophosphates and Alkylphosphonates OR SN2 >> DNA alkylation >> Vicinal Dihaloalkanes OR SN2 >> Internal SN2 reaction with aziridinium and/or cyclic sulfonium ion formation (enzymatic) OR SN2 >> Internal SN2 reaction with aziridinium and/or cyclic sulfonium ion formation (enzymatic) >> Vicinal Dihaloalkanes OR SN2 >> Nucleophilic substitution at sp3 Carbon atom OR SN2 >> Nucleophilic substitution at sp3 Carbon atom >> Haloalkanes Containing Heteroatom OR SN2 >> Nucleophilic substitution at sp3 Carbon atom >> Specific Acetate Esters OR SN2 >> Nucleophilic substitution at sp3 carbon atom after thiol (glutathione) conjugation OR SN2 >> Nucleophilic substitution at sp3 carbon atom after thiol (glutathione) conjugation >> Geminal Polyhaloalkane Derivatives by DNA binding by OASIS v.1.3

Domain logical expression index: "g"

Referential boundary: The target chemical should be classified as Does NOT Biodegrade Fast by Biodeg probability (Biowin 1) ONLY

Domain logical expression index: "h"

Referential boundary: The target chemical should be classified as Not possible to classify according to these rules by DPRA Cysteine peptide depletion

Domain logical expression index: "i"

Referential boundary: The target chemical should be classified as High reactive OR High reactive >> Activated haloarenes OR Low reactive OR Low reactive >> N-substituted aromatic amides by DPRA Cysteine peptide depletion

Domain logical expression index: "j"

Referential boundary: The target chemical should be classified as Non binder, MW>500 by Estrogen Receptor Binding

Domain logical expression index: "k"

Referential boundary: The target chemical should be classified as Non binder, without OH or NH2 group by Estrogen Receptor Binding

Domain logical expression index: "l"

Parametric boundary:The target chemical should have a value of Molecular weight which is >= 516 Da

Domain logical expression index: "m"

Parametric boundary:The target chemical should have a value of Molecular weight which is <= 819 Da

Validity criteria fulfilled:
not specified
Interpretation of results:
not readily biodegradable
Conclusions:
The test chemical 7-acetamido-4-hydroxy-3-[(E)-2-{4-[2-(sulfooxy)ethanesulfonyl]phenyl}diazen-1-yl]naphthalene-2-sulfonic acid showed 1.7 % degradation by considering BOD as parameter and microrganisms as inoculum in 28 days. Based on Percent biodegradability it is concluded that this test chemical is not readily biodegradable.
Executive summary:

Biodegradbility of test chemical 7-acetamido-4-hydroxy-3-[(E)-2-{4-[2-(sulfooxy)ethanesulfonyl]phenyl}diazen-1-yl]naphthalene-2-sulfonic acid was predicted by using OECD QSAR tool box v3.3 using log Kow as primary descriptor. The test chemical 7-acetamido-4-hydroxy-3-[(E)-2-{4-[2-(sulfooxy)ethanesulfonyl]phenyl}diazen-1-yl]naphthalene-2-sulfonic acid showed 1.7 % degradation by considering BOD as parameter and microrganisms as inoculum  in 28 days. Based on Percent biodegradability it is concluded that this test chemical is not readily biodegradable.

Description of key information

Biodegradbility of test chemical 7-acetamido-4-hydroxy-3-[(E)-2-{4-[2-(sulfooxy)ethanesulfonyl]phenyl}diazen-1-yl]naphthalene-2-sulfonic acid was predicted by using OECD QSAR tool box v3.3 using log Kow as primary descriptor. The test chemical 7-acetamido-4-hydroxy-3-[(E)-2-{4-[2-(sulfooxy)ethanesulfonyl]phenyl}diazen-1-yl]naphthalene-2-sulfonic acid showed 1.7 % degradation by considering BOD as parameter and microrganisms as inoculum  in 28 days. Based on Percent biodegradability it is concluded that this test chemical is not readily biodegradable.

Key value for chemical safety assessment

Biodegradation in water:
under test conditions no biodegradation observed

Additional information

 Results of two different predicted data study for target chemical 7-acetamido-4-hydroxy-3-[(E)-2-{4-[2-(sulfooxy)ethanesulfonyl]phenyl}diazen-1-yl]naphthalene-2-sulfonic acid (CAS no.68189-39-9) and supporting experimental weight of evidence studies for its structurally similar read across chemical were summarized below.

 

 In first weight of evidence study the biodegradability of test chemical 7-acetamido-4-hydroxy-3-[(E)-2-{4-[2-(sulfooxy)ethanesulfonyl]phenyl}diazen-1-yl]naphthalene-2-sulfonic acid was predicted by using OECD QSAR tool box v3.3 using log Kow as primary descriptor in this study the test chemical 7-acetamido-4-hydroxy-3-[(E)-2-{4-[2-(sulfooxy)ethanesulfonyl]phenyl}diazen-1-yl]naphthalene-2-sulfonic acid showed 1.7 % degradation by considering BOD as parameter and microrganisms as inoculum  in 28 days. Based on Percent biodegradability it is concluded that this test chemical is not readily biodegradable.

 

Another weight of evidence study was done by using Estimation Programs Interface Suite (EPI suite, 2017) to estimate the biodegradation potential of the test compound 7-acetamido-4-hydroxy-3-[(E)-2-{4-[2-(sulfooxy)ethanesulfonyl]phenyl}diazen-1-yl]naphthalene-2-sulfonic acid (CAS no. 68189 -39 -9) in the presence of mixed populations of environmental microorganisms. The biodegradability of the substance was calculated using seven different models such as Linear Model, Non-Linear Model, Ultimate Biodegradation Timeframe, Primary Biodegradation Timeframe, MITI Linear Model, MITI Non-Linear Model and Anaerobic Model (called Biowin 1-7, respectively) of the BIOWIN v4.10 software. The results indicate that chemical 7-acetamido-4-hydroxy-3-[(E)-2-{4-[2-(sulfooxy)ethanesulfonyl]phenyl}diazen-1-yl]naphthalene-2-sulfonic acid is expected to be not readily biodegradable.

 

Next study was supporting weight of evidence study was done from Chemosphere journal, 1986 for structurally similar read across chemical 4-amino-5-hydroxy-3,6-bis[2-[4-[[2-(sulfooxy)ethyl]sulfonyl]phenyl]diazenyl]-, sodium salt (1:4)( CAS no.17095-24-8. In this study the aerobic biodegradation experiment was performed for read across chemical by using activated sludge at concentration 0.5 g/L dry material as inoculums and initial concentration of chemical taken was 100mg/L for 28 days. By considering DOC removal parameter read across chemical showed     -53 % biodegradation in 28 days. This read across chemical was categorized in D category which shows no elimination in static test. This percentage value is also very less So it is concluded that read across chemical 2,7-Naphthalenedisulfonic acid, 4-amino-5-hydroxy-3,6-bis[2-[4-[[2-(sulfooxy)ethyl]sulfonyl]phenyl]diazenyl]-, sodium salt (1:4) is not readily biodegradable.

 

Similarly, another supporting weight of evidence study was also done from Chemosphere journal, 1986 for another structurally similar read across chemical 2-Naphthalenesulfonic acid, 6-(acetylamino)-4-hydroxy-3-[2-[4-[[2-(sulfooxy)ethyl]sulfonyl]phenyl]diazenyl]-, sodium salt (1:2) ( CAS no.12225-88-6 in this study the aerobic biodegradation experiment was performed for read across chemical using activated sludge at concentration 0.5 g/L dry material as inoculums and initial concentration of chemical taken was 100mg/L for 42 days. By considering DOC removal parameter test chemical showed 15 % degradation in 28 days and this read across chemical was categorized in D category which shows no elimination in static test. This percentage value is very less So it is concluded that read across chemical sodium 2-Naphthalenesulfonic acid, 6-(acetylamino)-4-hydroxy-3-[2-[4-[[2-(sulfooxy)ethyl]sulfonyl]phenyl]diazenyl]-, sodium salt (1:2) is not readily biodegradable.

 

 Last supporting weight of evidence study was done from authoritative database J check, 2017 for structurally similar read across chemical 2,7-Naphthalenedisulfonic acid, 4-amino-5-hydroxy-3,6-bis[2-[4-[[2-(sulfooxy)ethyl]sulfonyl]phenyl]diazenyl]-, sodium salt (1:4) (CAS no. 17095-24-8). In this study the read across chemical was subjected to biodegradation test by taking activated sludge as inoculums at 30 mg/L concentration. Biodegradation was analysed by using BOD, TOC and HPLC parameters. The initial concentration of test chemical was 100 mg/L. The study design used was of standard type. The read across chemical 2,7-Naphthalenedisulfonic acid, 4-amino-5-hydroxy-3,6-bis[2-[4-[[2-(sulfooxy)ethyl]sulfonyl]phenyl]diazenyl]-, sodium salt (1:4) showed 4.0 % and 9 % biodegradation by considering BOD and TOC as parameter respectively but it showed 96 % biodegradation by HPLC parameter . Percent biodegradability values of read across chemical by BOD and TOC parameters are very low but by HPLC parameter test chemical showed very high biodegradability but this high value of biodegradation is not due complete degradation of read across chemical but it is due to partial change of test chemical and formation of 4-Amino-5-hydroxy-3,6-bis[4-(vinylsulfonyl)phenylazo]-2,7-naphthalenedisulfonic acid . Therefore on the basis of percent biodegradability by BOD and TOC parameters it is concluded that read across chemical 2,7-Naphthalenedisulfonic acid, 4-amino-5-hydroxy-3,6-bis[2-[4-[[2-(sulfooxy)ethyl]sulfonyl]phenyl]diazenyl]-, sodium salt (1:4) is not readily biodegradable.

 

 Results of all the studies mentioned above showed that the test chemical and structurally similar read across chemical are not readily biodegradable because percent biodegradability was very low in predicted studies as well as experimental studies. Therefore by compiling all above studies it is concluded that target chemical 7-acetamido-4-hydroxy-3-[(E)-2-{4-[2-(sulfooxy)ethanesulfonyl]phenyl}diazen-1-yl]naphthalene-2-sulfonic acid (CAS no.68189-39-9) can be considered as not readily biodegradable.