Registration Dossier
Registration Dossier
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 239-590-1 | CAS number: 15541-60-3
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data

Endpoint summary
Administrative data
Link to relevant study record(s)
Description of key information
Key value for chemical safety assessment
- Bioaccumulation potential:
- no bioaccumulation potential
Additional information
No toxicokinetic data on the registered substance is submitted. Absorption of the notified chemical through the skin and gastrointestinal tract is expected to be limited by its low partition coefficient (<-4.18 and -1.48 for the inorganic and organic components, respectively), though its moderate water solubility (0.225 g/l and 0.150 g/l for the organic and inorganic components, respectively) and relatively low molecular weight (< 500 Da) suggest that some absorption may occur. This is supported by the systemic toxicity in the 28-day oral study and OECD 422 study with MPP in rats where effects in the kidneys were noted. Pyrophosphate once absorbed will be likely to behave like diet phosphorus and therefore assimilated or excreted but not accumulating.
Inhalation of powders of the notified chemical may occur, given that it contains ~76% of particles of inhalable size. However, respiration of the notified chemical is not expected to be significant, given that only a small proportion is of respirable size (0.7%). Upon deposition in the airways, due to its moderate water solubility, the notified chemical may dissolve/diffuse into the mucus lining the respiratory tract and subsequently be transported out of the respiratory tract. This also suggests that the notified chemical may be systemically absorbed following inhalation.
It is possible that the MPP shows different physico-chemical properties from the organic component of MPP (melamine) and pyrophosphate because MPP is not inorganic salt of melamine or pyrophosphate but organic salt constituted by both of them. And according to these differences, it may also show different environmental and metabolic pathway from melamine and pyrophosphate.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.

EU Privacy Disclaimer
This website uses cookies to ensure you get the best experience on our websites.