Registration Dossier
Registration Dossier
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 807-040-5 | CAS number: 4538-42-5
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data

Developmental toxicity / teratogenicity
Administrative data
- Endpoint:
- developmental toxicity
- Type of information:
- experimental study
- Adequacy of study:
- key study
- Reliability:
- 1 (reliable without restriction)
- Rationale for reliability incl. deficiencies:
- other: GLP guideline study
Data source
Referenceopen allclose all
- Reference Type:
- study report
- Title:
- Unnamed
- Year:
- 1 999
- Report date:
- 1999
- Reference Type:
- publication
- Title:
- Developmental toxicity of 1,6-Hexamethylene diisocyanate (HDI) in the Sprague-Dawley rat
- Author:
- Astroff AB et al.
- Year:
- 2 000
- Bibliographic source:
- Teratology 62: 205-213
Materials and methods
Test guidelineopen allclose all
- Qualifier:
- according to guideline
- Guideline:
- OECD Guideline 414 (Prenatal Developmental Toxicity Study)
- Deviations:
- no
- Qualifier:
- according to guideline
- Guideline:
- EPA OPPTS 870.3700 (Prenatal Developmental Toxicity Study)
- Deviations:
- no
- GLP compliance:
- yes
Test material
- Reference substance name:
- Hexamethylene diisocyanate
- EC Number:
- 212-485-8
- EC Name:
- Hexamethylene diisocyanate
- Cas Number:
- 822-06-0
- Molecular formula:
- C8H12N2O2
- IUPAC Name:
- 1,6-diisocyanatohexane
- Test material form:
- liquid
Constituent 1
Test animals
- Species:
- rat
- Strain:
- Sprague-Dawley
- Details on test animals or test system and environmental conditions:
- TEST ANIMALS
- Source: Charles River Labs, Raleigh, NC
- Age at study initiation: 12-15 wks
- Weight at study initiation: Females: 237-325 g
- Housing: individual
- Diet: ad libitum (except during the exposure period)
- Water: ad libitum
- Acclimation period: at least 6 days
ENVIRONMENTAL CONDITIONS
- Temperature (°C): 18 - 26
- Humidity (%): 30 - 70
- Air changes (per hr): no data
- Photoperiod (hrs dark / hrs light): 12 / 12
Administration / exposure
- Route of administration:
- inhalation: vapour
- Type of inhalation exposure (if applicable):
- whole body
- Vehicle:
- other: air
- Details on exposure:
- TEST SUBSTANCE GENERATION:
HDI was generated as a vapor by passing filtered, dry air through liquid HDI in a grass bubbler. During vapor generation the bubbler containing HDl was immersed in a constant temperature water bath. The vaporized material was entrained with chamber intake air flow for mixing at the chamber head. Both bubbler temperature and air flow may have been adjusted to maintain desired chamber HDl concentrations and these parameters were monitored continuously with recordings at half-hour intervals (minimum) during eaeh six-hour exposure period.
EXPOSURE SYSTEM:
Chambers: The chambers used in this study were Hazleton H-2000 inhalation exposure chambers which are constructed of stainless steel with clear glass windows. Each chamber has an approximate volume of two cubic meters. The chambers are equipped with stainless steel, wire mesh cage-packs. Each cage-pack is fitted with removable feed troughs and an automatic watering system. The air supplied to the chamber passes through an activated charcoal trap and a HEPA filter before being conditioned to the desired temperature and relative humidity. These chambers have been used
previously for exposure of animals to HDI.
NOMINAL CHAMBER PARAMETERS (During Exposure):
Temperature: 22 ± 2°C; Relative Humidity: 50 ± 10%; Exhaust Flow: 650 ± 50 Lpm; Static Pressure: -0.25 to -1.0 inches of water relative to atmospheric.
To the extent possible these nominal values were maintained during each exposure period. During non-exposure periods (nights) nominal values for each chamber parameter were set to be maintained as Iisted above, with the exception that the range for RH shall be relaxed to be 40 - 70%. This was to accommodate expected inereases in RH due to chamber handling and animal care. The increase to 70% RH is in accordanee with AALAC guidelines governing care of rats. - Analytical verification of doses or concentrations:
- yes
- Details on analytical verification of doses or concentrations:
- Chamber samples were collected near the animal's breathing zone using two midget impingers connected in series. Samples were collected at a frequency that ensured that the average daily value was representative of the required concentration. At a minimum, three samples (one for the control
chamber) were collected per chamber per day. An acetonitrile solution (at least 10 mL per impinger) containing N-4-nitrobenzyl-N-n-propylamine (nitro reagent) was used to trap and derivatize HDl to a UV-absorbing compound. All midget impinger samples were assayed by an established high performance liquid chromatography method. The homogeneous distribution of HDI within the inhalation chambers has been confirmed in previous studies, under the conditions utilized in the present study. - Details on mating procedure:
- Rats were co-housed with a maximum of two females per male. Following cohabitation, morning vaginal smears were taken and examined for the presence of sperm. Females found to be sperm-positive were randomized into groups and the sire number was documented. The day on which sperm was observed in the vaginal smear was designated day 0 of gestation for that female.
- Duration of treatment / exposure:
- days 0 - 19 of gestation
- Frequency of treatment:
- once daily for 6 hours
- Duration of test:
- cesarean section and sacrifice at day 20 of gestation
- No. of animals per sex per dose:
- 30 females per dose
- Control animals:
- yes, sham-exposed
- Details on study design:
- DOSE SELECTION RATIONALE:
The concentrations of HDl used in this study were based on a 21-day inhalation toxicity study, a 90day inhalation toxicity study, a chronic inhalation toxicity/oncogenicity study, and a sensory irritation study. In the 21-day study, Sprague-Oawley rats were exposed to either 0, 0.005, 0.0175,
0.15, or 0.3 ppm HDl for 5 hours/day, 5 days/week for 3 weeks. Compound-related ocular and nasal irritation were observed in animals exposed to 0.0175, 0.15, and 0.3 ppm on days of exposure only. These findings were not observed during non-exposure days. There were no compound-related effects on body weight, feed consumption, clinical chemistry, hematology, urinalysis, or gross pathology. At 0.3 ppm, liver and kidney weights were decreased in females. The major findings for both sexes were histopathologie lesions of the nasal mucosa and minor changes in the larynx and trachea. This study demonstrated that the target site following HDl exposure was the nasal cavity. In the 90-day study, Fischer 344 rats were exposed to HDl concentrations of 0, 0.01, 0.04 and 0.14 ppm for 6 hours/day, 5days/week for approximately 13 weeks. The only compound-related findings were ocular irritation and histopathologic lesions of the anterior nasal cavity. Both findings were observed at all three concentrations, therefore, a clear NOEL was not established in this study. In the chronic/oncogenicity study, Fischer 344 rats were exposed to HDl concentrations of 0, 0.005, 0.025 and 0.175 ppm for 6 hours/day, 5 days/week for up to 2 years. Animals were evaluated following both one and two years of exposure. A maximum tolerated dose was achieved at the highest concentration based on decreased body weight and slight anemia in the females, and histopathologie lesions of the nasal cavity in both sexes. The lowest concentration (0.005 ppm) was shown to be a NOEL after one year of exposure. However, after two years of exposure 0.005 ppm was considered to be a NOAEL based on the observation of reversible lesions, indicative of responses to non-specific irritation. In the sensory irritation study, female Sprague-Dawley rats were exposed using the head-only technique, to 0, 0.10, 0.21, 0.79, and 4.42 ppm Mondur HX (100% HDl) for three hours. Following exposure the animals were held for a seven-day recovery period. A concentration dependent increase in the respiratory response (sensory irritation) was observed. The severity of the response culminated in the death of two rats at the 4.42 ppm dose level. The RD50 (concentration which was estimated to produee a 50% depression in respiratory frequency) for the last hour of a three-hour exposure was 1.69 ppm. The NOEL for this study was 0.1 ppm. Based on these results, and the projected exposure of the animals for approximately three weeks during the current study, the proposed concentrations were 0, 0.005, 0.05, and 0.3 ppm HDI.
Examinations
- Statistics:
- The data were analyzed with the litter as the primary experimental unit using applications provided by TASC. Parametric data (including dam body weights) were analyzed using an Analysis of Variance (ANOVA), and if significant differences were observed, a Dunnett's Test was performed. Fetal and
placental weights were specifically analyzed via the Healy's Test if significance was observed in the ANOVA. Nonparametric data (e.g. Iitter size and number of corpora lutea) were first analyzed by the Kruskal-Wallis test and then subjected to Dunn's Test if significant differences were identified. Nonparametric dichotomous data (e.g. number normal/abnormal) were initially analyzed by the Chi-Square Test and if significance was observed between groups then by the Fisher's Exact Test with the Bonferroni adjustment. A p-value less than or equal to 0.05 was considered statistically significant. - Historical control data:
- yes
Results and discussion
Results: maternal animals
Maternal developmental toxicity
- Details on maternal toxic effects:
- Maternal toxic effects:yes
Details on maternal toxic effects:
0.300 ppm:
No mortality; no clinical signs; no test compound related effects on maternal body weight, uterine weight, and net body weight; microscopic changes within the nasal cavity.
0.050 ppm:
No mortality; no clinical signs; no test compound related effects on maternal body weight, uterine weight, and net body weight; microscopic changes within the nasal cavity (to a lesser extent compared to the 0.300 ppm exposure group).
0.005 ppm:
No mortality; no clinical signs; no test compound related effects on maternal body weight, uterine weight, and net body weight; no microscopic changes.
Effect levels (maternal animals)
open allclose all
- Dose descriptor:
- NOAEC
- Effect level:
- 0.005 ppm (nominal)
- Basis for effect level:
- other: maternal toxicity
- Dose descriptor:
- NOAEC
- Effect level:
- 0.3 ppm (nominal)
- Basis for effect level:
- other: developmental toxicity
Results (fetuses)
- Details on embryotoxic / teratogenic effects:
- Embryotoxic / teratogenic effects:no effects
Details on embryotoxic / teratogenic effects:
All dose groups:
No effects on reproductive parameters; no embryotoxicity; no litter effects; no fetal external, visceral, and skeletal malformations.
Effect levels (fetuses)
- Dose descriptor:
- NOAEC
- Effect level:
- 0.3 ppm (nominal)
- Basis for effect level:
- other: teratogenicity
Fetal abnormalities
- Abnormalities:
- not specified
Overall developmental toxicity
- Developmental effects observed:
- not specified
Any other information on results incl. tables
Maternal toxicity was demonstrated in the 0.300 and to a lesser extent in the 0.050 ppm exposure groups. No maternal effects were noted in the 0.005 ppm dose group. Test compound-related maternal effects were restricted to histopathological findings, and included acanthosis, hyperkeratosis, inflammation of the nasal turbinates, and more seriously, degeneration of the olfactory epithelium. No pathological alterations were noted in the larynx, trachea, or lungs in any dose group. No test compound-related effects were observed on any reproductive parameters, or any embryonic endpoints, including pre/post-implantation loss and resorptions. There were no effects on litter size or the number of fetuses per implantation site and no effects on fetal or placental weights were observed. No test compound-related fetal external, visceral, or skeletal findings were observed. No effect on the fetal or litter incidence of total malformations or variations was observed and there was no difference in the incidence of malformations between males and females.
1,6-Hexamethylene diisocyanate (HDI), administered as described in this study, produced maternal effects (nasal turbinate histopathology) at concentrations of 0.050 and 0.300 ppm. No developmental toxicity was observed at any concentration level. Therefore, the maternal no-observed-effect-level (NOEL) was 0.005 ppm HDI and the developmental NOEL was 0.300 ppm HDI.
Analytically confirmed overall (for the entire study) mean HDI vapour concentrations were 0.005, 0.052 and 0.308 ppm.
Applicant's summary and conclusion
- Executive summary:
In a developmental toxicity study (OECD TG 414) with 1,6-hexamethylene diisocyanate (HDI) rats were exposed, via whole-body exposure, to HDI vapour concentrations of 0, 0.005, 0.050, or 0.300 ppm for 6 hours/day on days 0 through 19 of gestation. Analytically confirmed overall (for the entire study) mean HDI vapour concentrations were 0.005, 0.052 and 0.308 ppm. Maternal toxicity was demonstrated in the 0.300 and to a lesser extent in the 0.050 ppm exposure groups. No maternal effects were noted in the 0.005 ppm dose group. Test compound-related maternal effects were restricted to histopathological findings, and included acanthosis, hyperkeratosis, inflammation of the nasal turbinates, and more seriously, degeneration of the olfactory epithelium. No pathological alterations were noted in the larynx, trachea, or lungs in any dose group. No test compound-related effects were observed on any reproductive parameters, or any embryonic endpoints, including pre/post-implantation loss and resorptions. There were no effects on litter size or the number of fetuses per implantation site and no effects on fetal or placental weights were observed. No test compound-
related fetal external, visceral, or skeletal findings were observed. No effect on the fetal or litter incidence of total malformations or variations was observed and there was no difference in the incidence of malformations between males and females.
In summary, HDI produced maternal effects (nasal turbinate histopathology) at concentrations of 0.050 and 0.300 ppm. No developmental toxicity was observed at any concentration level. Therefore, the maternal no-observed-effect-level (NOEL) was 0.005 ppm and the developmental NOEL was 0.300 ppm.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.
