Registration Dossier
Registration Dossier
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 285-547-5 | CAS number: 85116-93-4
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data

Endpoint summary
Administrative data
Link to relevant study record(s)
Description of key information
Key value for chemical safety assessment
Additional information
Absorption, Distribution, Biotransformation and Excretion:
There are no quantitative data on the uptake of Fatty Acid Polyol Esters. Low amounts can be absorbed via oral, respiratory, and dermal routes of exposure. Due to the uses stated in chapter 3, dermal as well as inhalative exposure is possible for workers as well as for the general public during certain industrial, professional and consumer applications. The inhalative and dermal availability is limited by the physicochemical properties of fatty acid polyols, which generally have a poor water solubility, a log Kow>4 and a relatively high molecular weight. The inhalative availability is furthermore reduced by the low vapour pressure of <0.01 Pa. The formation of vapour can therefore be excluded but nevertheless, due to spray-applications, aerosol-formation is possible.
The absorbability of esterified alcohols containing one to eight ester groups given orally have been studied and there was little difference for polyol esters up to four ester groups. Esters of polyols (pentaerythritol, dipentaerythritol and 1,1,1-trimethylolpropane) have a common metabolic fate that involves stepwise hydrolysis to the carboxylic (e.g. fatty) acids and their polyols (pentaerythritol, dipentaerythritol or trimethylolpropane), respectively. This is supported by the action of ubiquitously distributed unspecific esterases and by site-specific and non-specific gastrointestinal lipases so only low and transient exposure to the parent compound is expected.
Straight-chain fatty acids are normal dietary constituents and ubiquitous substrates for energy production by physiological pathways like the citric acid cycle, sugar synthesis, and lipid synthesis. Medium-chain fatty acids (MCFA) are readily absorbed from the small intestine directly into the bloodstream and transported to the liver for hepatic metabolism, while long-chain fatty acids (LCFA) are less readily absorbed, are incorporated into chylomicrons and enter the lymphatic system. It has been noted by several investigators that increasing fatty acid chain length slightly decreased their digestibility. MCFA are readily broken down to carbon dioxide and two-carbon fragments, while LCFA are re-esterified to triacylglycerols and either metabolized for energy or stored in adipose tissue. The natural occurence of fatty acids and their specific metabolic fate imply that the exposure to small amounts is not a risk factor for human beings.
The polyols are very polar (log Kow<-2) and do not accumulate in the body but are readily excreted via urine. Alternatively, one or several hydroxyl groups can be oxidized to a carboxylic acid moiety prior to urinary excretion.
There are sufficient toxicity data for both the resulting fatty acids and the alcohol component, showing that the metabolites have little or no potential to cause toxic effects.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.
