Registration Dossier

Diss Factsheets

Ecotoxicological information

Endpoint summary

Administrative data

Description of key information

Additional information

Approach and data-selection for the environmental hazard assessment

 

In accordance to the copper RA,the environmental hazard assessment is based on tests carried out with soluble copper species.

 

- Studies reporting quantitative dose responses of copper ions, delivered from soluble copper compounds to aquatic and terrestrial organisms are used for the assessment.

- Bioavailability of the copper ions in both laboratory tests and in the environment may be affected by abiotic factors, (such as pH, alkalinity, hardness and DOCfor the water compartment) and therefore copper bioavailability is considered for the interpretation of the copper effects data.  

Approach for PNEC derivation

All high quality and ecological relevant chronic data (NOECs and EC10s) (also from non-standard protocols) were retained for the PNEC derivation. This resulted in a large amount of reliable and relevant environmental effects data of soluble copper compounds for a broad range of relevant species, covering key ecological compartments (freshwater, marine waters, freshwater sediments, terrestrial, sewage treatment plants). 

The assessment on the environmental hazards recognizes that copper is a natural element and essential nutrient and therefore important additional information of relevance to the PNEC derivations for the freshwater and marine compartments are retained.

-  Effectsdue to copper deficiencyin addition to theeffects due to copper excess are reported. 

 - Information from scientific studies designed to elucidatethe mechanism of action of Cu-ions are reported.  

-       Toxicity fromwaterborne and dietary exposureroutes are evaluated

-       Single species as well as multi-species laboratory or field test set-ups are assessed.  

-       Considering that both the added and the background copper concentrations may contribute to the observed effects, this risk assessment implements thetotal risk approach.  Information onbackground variability(in culture media and natural European environments (water, sediments, soils)) and its influence on a number of biological/ecological processes (e.g. optimal concentration ranges, acclimation/adaptation, field community responses) is nevertheless crucial for the derivation of ecological relevant PNEC values and are therefore considered in the chemical safety report.


Ecotoxicological data of relevance to the of aquatic PNEC derivation

The high quality long term effects records used for the PNEC derivation of copper under the Existing Substances Regulation (TCNES) and Biocidal Products regulations (Technical meetings) have been included in the IUCLID data-base. Tests that were considered as not-reliable for the PNEC derivations have NOT been included in the IUCLID records but have been summarized in the copper RA report (2008).

 

Freshwater effects:

The freshwater effects assessment is based on the Copper Voluntary Risk Assessment under the Existing Substances Regulation, and was subsequently updated in 2022. The effects dataset was updated with new reliable and relevant data that have become available since the completion of the Copper Voluntary Risk Assessment, and the copper bioavailability models have been updated using newly available data and speciation models. The update is described in two reports (ARCHE, 2022a and 2022b) which are included in IUCLID section 13.

After the update, the freshwater effect records include 338 high quality single-species chronic NOEC/L(E) C10 values from 35 different aquatic species, representing different trophic levels (fish, invertebrates, algae, aquatic plants).  Study summaries of the studies that were not deemed high-quality, and that were therefore not included, are available from the Copper Voluntary Risk Assessment, appendix L (for studies identified during the Copper VRA) and are reported in ARCHE (2022a) for studies identified in the 2022 update (see IUCLID section 13).

These NOEC/L(E)C10 values are carried forward for the freshwater PNEC derivation in a WOE approach.The NOECS from the Copper Voluntary Risk Assessment are also carried forward as a weight of evidence for the freshwater sediment PNEC derivation using the equilibrium partitioning approach.

The copper threshold values derived for three high quality mesocosm studies, representing lentic and lotic systems and including a wide variety of potentially sensitive species (algae, invertebrates and higher plants) are used as additional WOE for the PNEC derivations of the freshwater and the sediment compartment. The records are included in section 6.6. (additional ecotoxicological information). Study summaries of the field and mesocosm studies that were not deemed high-quality, and that were therefore not included, are available from the Copper Voluntary Risk Assessment, appendix L.

 

Considering the importance of understanding the mechanism of action (target tissues, dietborne versus waterborne exposures, influence of acclimation) for defining the uncertainty around the PNEC, relevant supportive papers that are critical to the understanding of the mechanism of action are included in the database.

 

Considering the importance of bio-availability for reducing the intra-species variability, the data- base includes supportive information related to the development/validation of the copper bio-availability models (so called Biotic Ligand Models) and the physico-chemistry needed for the normalization the individual NOEC values.

Considering the essential functions of copper, the data-base further includes reliable supporting papers on copper deficiency. 

 

More details are provided in the sections chronic toxicity to fish, invertebrates, algae, aquatic plants and additional ecotoxicological information.

Marine effects:The freshwater effect records include 56 high quality single-species chronic NOEC/L(E) C10 values from 24 different aquatic species, representing different trophic levels (fish, invertebrates, algae, aquatic plants). 

These NOEC/L(E) C10 values are carried forward for the marine PNEC derivation in a WOE approach. These NOECS are also carried forward for the marine sediment PNEC derivation using the equilibrium partitioning approach.

In response to the recommendation from TCNES and SCHER, a marine mesocosm has been carried out and these results are included in the IUCLID records. The copper threshold value derived for from this high quality marine mesocosm study, was used for as additional WOE for the PNEC derivation. The records is included in section 6.6. (additional ecotoxicological information)..

 

Considering the importance of understanding the mechanism of action for defining the uncertainty around the PNEC, supportive papers that are critical to the understanding of the mechanism of action are included in the database.

- Considering the importance of bio-availability for reducing the intra-species variability, the data- base includes supportive information related to the development/validation of the marine organic carbon normalization, key to copper bio-availability in marine systems. The OC normalization model is used for normalizing the NOEC/L(E) C10 values and deriving the marine PNEC.

More details are provided in the sections chronic toxicity to fish, invertebrates, algae, aquatic plants and additional ecotoxicological information.

 

Effects for Sewage Treatment plants: Data on the toxicity tests performed with aquatic bacteria and protozoa, reported as L(E)C50and NOEC values are available. The exposure time among reports varied from short term batch exposures to continuous exposures. The effects endpoints on micro-organisms covered are: heterotrophic respiration inhibition, nitrification inhibition and effects on ciliated protozoa.

More details are provided in the section micro-organisms.

Effects for freshwater sediment organisms:The freshwater sediment effect records include 62 high quality single-species chronic NOEC/L(E) C10 values from 6 different sediment- dwelling organisms that are carried forward for the sediment PNEC derivation in a WOE approach.. The data base includes additional information in support of the incorporation of bioavailability in the PNEC derivations

More details are provided in the section sediment effects

Note: The classification of copper for environmental hazards is discussed in detail in the report "The environmental hazard classification of copper". This report is attached to Section 13 of the IUCLID file.