Registration Dossier

Data platform availability banner - registered substances factsheets

Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.

The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.

Diss Factsheets

Administrative data

Description of key information

Combined Repeated Dose Toxicity Study with the Reproduction/Developmental Toxicity Screening Test – NOAEL ≥ 1000 mg/kg for rats (OECD 422)

Repeated Dose Oral 90d - NOAEL ≥ 5000 mg/kg bw/day for rats (OECD 408)

Repeated Dose Inhalation 90d – NOAEL ≥ 10400 mg/m3 for rats (similar to OECD TG 413)

Key value for chemical safety assessment

Repeated dose toxicity: via oral route - systemic effects

Link to relevant study records

Referenceopen allclose all

Endpoint:
short-term repeated dose toxicity: oral
Type of information:
experimental study
Adequacy of study:
key study
Study period:
1995
Reliability:
1 (reliable without restriction)
Rationale for reliability incl. deficiencies:
other: According to or similar to guideline study OECD 422: GLP
Justification for type of information:
OECD Guideline 422 (Combined Repeated Dose Toxicity Study with the Reproductive / Developmental Toxicity Screening Test)
Reason / purpose for cross-reference:
reference to same study
Qualifier:
equivalent or similar to guideline
Guideline:
OECD Guideline 422 (Combined Repeated Dose Toxicity Study with the Reproduction / Developmental Toxicity Screening Test)
GLP compliance:
yes
Limit test:
yes
Species:
rat
Strain:
Sprague-Dawley
Sex:
male/female
Route of administration:
oral: gavage
Vehicle:
not specified
Details on oral exposure:
Males were treated from day 14 prior to the mating phase until the end of the mating phase and then killed, Females were treated from day 14 prior to mating, through day 4 of lactation and then killed.
Analytical verification of doses or concentrations:
not specified
Duration of treatment / exposure:
Males were treated from day 14 prior to the mating phase until the end of the mating phase and then killed, Females were treated from day 14 prior to mating, through day 4 of lactation and then killed.
Frequency of treatment:
7days/week
Remarks:
Doses / Concentrations:
0, 25, 150, or 1000 mg/kg/day (10 ml/kg dosing volume)
Basis:
other: gavage
No. of animals per sex per dose:
10 male, 10 female per group
Control group: 10 male, 10 female, 0.5% methylcellulose
Control animals:
yes
Observations and examinations performed and frequency:
Effects on general toxicity, neurobehavioral activity, clinical chemistry, and hematology were evaluated. Gross necropsies and histopathologic examination of tissues were conducted with emphasis on the male reproductive tract.
Sacrifice and pathology:
All surviving animals were sacrificed following dosing
Statistics:
Adult body and organ weight, food consumption, clinical chemistry, open field activity and hematologic data (raw or transformed) were compared using either parametric or nonparametric (Kruskal-Wallis) ANOVA depending on whether the data were found to be homogeneous or nonhomogeneous using Bartlett's homogeneity of variance procedure. If ANOVA analysis indicated significant differences, Dunnett's test and Mann Whitney's U test, for parametric and nonparemetric data, respectively, were used to analyze for differences between the various dose groups.
Clinical signs:
no effects observed
Mortality:
no mortality observed
Body weight and weight changes:
no effects observed
Food consumption and compound intake (if feeding study):
no effects observed
Food efficiency:
not specified
Water consumption and compound intake (if drinking water study):
not examined
Ophthalmological findings:
not examined
Haematological findings:
no effects observed
Clinical biochemistry findings:
no effects observed
Urinalysis findings:
no effects observed
Behaviour (functional findings):
no effects observed
Organ weight findings including organ / body weight ratios:
no effects observed
Gross pathological findings:
no effects observed
Histopathological findings: non-neoplastic:
no effects observed
Histopathological findings: neoplastic:
no effects observed
Details on results:
No deaths or clinical signs of toxicity or behavioral changes were noted. No significant differences in body weights or feed consumption were observed. Startle reflex, open field test, and forelimb grip reflex performance data also revealed no treatment-related findings.
There were also no treatment-related changes in hematology or blood chemistry parameters, organ weights or gross pathology. An apparent treatment-related, slight to moderate hyperplasia of the non-glandular mucosa of the stomach, associated with degeneration, hyperkeratosis and submucosal subacute inflammation and, in a few cases, with erosion, was seen in animals of all treated groups. This effect was considered an artifact of the dosing method and not directly related to the toxicity of the test material. No other treatment related histological changes were observed.
Key result
Dose descriptor:
NOAEL
Effect level:
>= 1 000 mg/kg bw/day (nominal)
Sex:
male/female
Basis for effect level:
other: No treatment-related mortality or significant adverse clinical effects occurred.
Critical effects observed:
not specified
Conclusions:
Based on these data, the no-observable- adverse effect level (NOAEL) for repeated dose toxicty was >= 1000 mg/kg/day, the highest dose tested.
Executive summary:

Groups of 10 male and 10 female Sprague Dawley rats were dosed with decane daily by gavage at exposure levels of 0, 25, 150, or 1000 mg/kg/day. Males were dosed from the 14th day prior to mating, during mating until the end of the mating period. Females were dosed from the 14th day prior to the start of the mating phase to day 4 of lactation.  Oral dosing of decane produced no evidence of any adverse effects on clinical observations, organ weights, gross pathology, neurobehavioral activity, clinical chemistry or hematology endpoints. Evidence of irritation of the nonglandular mucosa of the stomach was observed, but was considered an artifact of the dosing method and not attributed to the inherent toxicity of the test material.  Based on these data, the no-observable- adverse effect level (NOAEL) for repeated dose toxicty was >=1000 mg/kg/day, the highest dose tested. 

Endpoint:
sub-chronic toxicity: oral
Type of information:
read-across from supporting substance (structural analogue or surrogate)
Adequacy of study:
key study
Study period:
1991
Reliability:
1 (reliable without restriction)
Rationale for reliability incl. deficiencies:
other: Acceptable, well-documented study report equivalent or similar to OECD guideline 408: GLP
Justification for type of information:
A discussion and report on the read across strategy is given as an attachment in IUCLID Section 13.
Reason / purpose for cross-reference:
read-across: supporting information
Qualifier:
equivalent or similar to guideline
Guideline:
OECD Guideline 408 (Repeated Dose 90-Day Oral Toxicity Study in Rodents)
Principles of method if other than guideline:
According to EPA guideline 82-1
GLP compliance:
yes
Species:
rat
Strain:
Sprague-Dawley
Sex:
male/female
Details on test animals or test system and environmental conditions:
TEST ANIMALS
- Source: Harlan Sprague Dawley Inc.
- Age at study initiation: ca. 8 weeks
- Weight at study initiation: 238-295g (males); 180-236g (females)
- Housing: individual
- Diet (e.g. ad libitum): ad libitum
- Water (e.g. ad libitum):ad libitum
- Acclimation period: 16 days


ENVIRONMENTAL CONDITIONS
- Temperature (°F): 68-76
- Humidity (%): 40-70
- Photoperiod (hrs dark / hrs light): 12/12


IN-LIFE DATES: From: 1990-12-17 To:1991-07-13
Route of administration:
oral: gavage
Vehicle:
corn oil
Details on oral exposure:
PREPARATION OF DOSING SOLUTIONS:
Test material was mixed with corn oil to ensure a 10ml/kg dose volume at all dose levels.

Test material mixtures were administered by oral gavage at a dose volume of 10ml/kg. The control animals received carrier at a dose of 10ml/kg. The satellite group was dosed at the high dose level for the same duration as main test and allowed to recover for 28 days post-treatment.

VEHICLE
- Amount of vehicle (if gavage): 10ml/kg

Analytical verification of doses or concentrations:
not specified
Duration of treatment / exposure:
13 weeks
Frequency of treatment:
7 days/week
Remarks:
Doses / Concentrations:
5000 mg/kg
Basis:
actual ingested
Remarks:
Doses / Concentrations:
2500 mg/kg
Basis:
actual ingested
Remarks:
Doses / Concentrations:
500 mg/kg
Basis:
actual ingested
No. of animals per sex per dose:
10 animals/sex/dose
Control animals:
yes, concurrent vehicle
Details on study design:
Test material mixtures were administered by oral gavage at three different doses at a dose volume of 10ml/kg. The control animals received carrier at a dose of 10ml/kg. The satellite group was dosed at the high dose level for the same duration as the main test and allowed to recover for 28 days post-treatment.

- Post-exposure recovery period in satellite groups: 28 days post-treatment
Observations and examinations performed and frequency:
CAGE SIDE OBSERVATIONS: Yes
- Time schedule: twice daily monday-friday and once daily on weekends and holidays

DETAILED CLINICAL OBSERVATIONS: Yes
- Time schedule: daily

BODY WEIGHT: Yes
- Time schedule for examinations: prior to dosing, the day of dose initiation, and weekly thereafter

OPHTHALMOSCOPIC EXAMINATION: Yes
at study initiation and during the final week of the main study

HAEMATOLOGY: Yes
- Time schedule for collection of blood: at main study termination and on satellite animals on the day of recovery sacrifice
- Anaesthetic used for blood collection: No
- Animals fasted: Yes
- How many animals:all

CLINICAL CHEMISTRY: Yes
- Time schedule for collection of blood: at main study termination and on satellite animals on the day of recovery sacrifice
- Animals fasted: Yes
- How many animals: all

URINALYSIS: No

NEUROBEHAVIOURAL EXAMINATION: No
Sacrifice and pathology:
GROSS PATHOLOGY: Yes
HISTOPATHOLOGY: Yes
Statistics:
The following parameters were statistically analyzed for significant differences: mean hematology parameters, serum chemistry parameters, organ weights, organ to body weight ratios, body weights, mean food consumption. Comparisons were limited to within sex analysis. Statistical evaluation of equality of means was done by an appropriate one way analysis of variance and a test of ordered response in the dose groups. First, Bartlett’s test was performed to determine if the dose groups have equal variance. If the variances were equal, the testing was done using parametric methods, otherwise nonparametric techniques were used.

For the parametric procedures, a standard one way ANOVA using the F distribution to assess significance was used. If significant differences among the means were indicated, Dunnett’s test was used to determine which treatment groups differ significantly from control. In addition to ANOVA, a standard regression analysis for liner response in the dose groups and linear lack of fit were preformed.

For the nonparametric procedure the test of equality of means was performed using the Kruskal-Wallis test. If significant differences among the means was indicated, Dunn’s Summed Rank test was used to determine which treatment group differ significantly from control. In addition, Jonckheere’s test for monotonic trend in the dose response was performed.

The statistical t-test was used to compare the satellite group’s main study termination and recovery termination hematology and clinical chemistry values. In addition, the t-test was used to compare the satellite group's and the control group's relative organ weights. The t-test was also used to compare the high dose and satellite groups to ensure similar results in order to accurately evaluate the recovery effects.
Clinical signs:
no effects observed
Mortality:
no mortality observed
Body weight and weight changes:
no effects observed
Food consumption and compound intake (if feeding study):
no effects observed
Food efficiency:
not examined
Water consumption and compound intake (if drinking water study):
not examined
Ophthalmological findings:
no effects observed
Haematological findings:
no effects observed
Clinical biochemistry findings:
no effects observed
Urinalysis findings:
not examined
Behaviour (functional findings):
not examined
Organ weight findings including organ / body weight ratios:
no effects observed
Gross pathological findings:
no effects observed
Histopathological findings: non-neoplastic:
no effects observed
Histopathological findings: neoplastic:
no effects observed
Details on results:
CLINICAL SIGNS AND MORTALITY
One male and 1 female died in the control group, 2 females died in the 2500 mg/kg dose group, 4 females died in the 5000 mg/kg dose group, 2 males and 3 females died in the satellite group. With the exception of one 2500 mg/kg female, all of the other 13 listed spontaneous deaths appear to be a result of dosing trauma and/or aspiration of test material (due to physical characteristics of test material and the high dosage volume).

The majority of animals in the control, low and mid dose groups displayed no observable abnormal clinical signs. Observations included but are not limited to scabs, maloccluded incisors, alopecia and staining of fur, dry/wet rales, dyspnea, nasal discharge. The type and incidence of abnormal clinical signs were similar between the high dose and satellite groups with a dramatic increase in incidence when compared to mid dose group. Clinical signs most frequently noted included swollen anus, ano-genital staining, emaciation, and alopecia. During the satellite recovery period, the incidence of abnormal signs decreased over time with an increase in the number of animals exhibiting no observable abnormalities.

BODY WEIGHT AND WEIGHT GAIN
Statistically significant decreases from controls at the p<=0.05 level of significance were noted for mid dose males on days 77, 84, 91 and termination and for the high dose males on Day 42. A statistically significant decrease (p<=0.01) was noted for the high dose group males on Day 49 and continued through the end of the treatment period. Statistically significant decreases were noted for mid dose females (p<=0.05) on day 91 and for high dose females on days 77 and 91. At termination both mid and high dose females displayed a statistically significant decrease in body weight.

FOOD CONSUMPTION AND COMPOUND INTAKE (if feeding study)
Statistically significant increases in food consumption which were linearly related to dose were noted for males on Days 28 through 56 and Day 70 through termination. Significance levels were noted for both the mid and high dose males during these periods. These trends were also evident in the females where statistically significant increases in food consumption were noted on Days 21, 42, 49, and 63 through 95.

OPHTHALMOSCOPIC EXAMINATION
No treatment-related findings.

HAEMATOLOGY
A statistically significant increase in platelets which was linearly related to dose in both the males and females was observed. In addition the male animals displayed a linear dose related increase in white blood cells. The mid dose male values were noted to differ significantly from those of controls for hematocrit and hemoglobin at the p<=0.01 level of significance and mean corpuscular volume and mean corpuscular hemoglobin at the p<=0.05 level of significance.

CLINICAL CHEMISTRY
Statistically significant increases in males (p<=0.01) for urea nitrogen and gamma glutamyl transpeptidase for the high dose males and also the mid dose males for urea nitrogen. An increase for cholesterol was noted for the mid and high dose groups of both sexes (p<=0.01). An increase in alanine aminotransferase was also noted for the mid and high dose males (p<=0.01). Glucose levels were significantly lower than the control values (p<=0.01) for both sexes in the mid and high dose and for the male low dose (P<=0.05). A statistically significant increase in bilirubin in the high dose of both sexes was observed. Other parameters showing statistically significant differences from controls included creatinine, chloride, tryglycerides.

ORGAN WEIGHTS
Liver weights were elevated in male and female rats at 2500 and 5000 mg/kg/day. Adrenal weights were significantly increased in male and female rats at 5000 mg/kg and in female rats at 2500 and 5000 mg/kg. Testes weights were elevated in male rats at 5000 mg/kg. Both the male and female relative kidney weights for all treated groups were significantly different from the control value (p<=0.01).

GROSS PATHOLOGY
Most frequently observed abnormalities include small and large intestine distension (mid and high dose groups); swollen anus (high dose groups), staining of the fur (mid and high dose groups).
Key result
Dose descriptor:
NOAEL
Effect level:
>= 5 000 mg/kg bw/day (nominal)
Sex:
male/female
Basis for effect level:
other: No treatment-related mortality or significant adverse clinical effects occurred.
Critical effects observed:
not specified
Conclusions:
The No Observed Adverse Effect Level (NOAEL) following oral exposure to MRD-89-582 for 90-days is greater than or equal to 5000 mg/kg/day.
Executive summary:

MRD-89-582 was administered by oral gavage to rats at concentrations of 500, 2500 and 5000 mg/kg, 7 days a week for 13 weeks to assess the subchronic toxicity.  An additional group of animals, dosed at 5000 mg/kg/day, was held for 4 weeks to assess reversibility.  No treatment-related mortality was observed; however, male body weights were decreased while food consumption increased in the 2500 and 5000 mg/kg dose groups.  Liver weights were elevated in male and female rats at 2500 and 5000 mg/kg/day.  Adrenal weights were significantly increased in male and female rats at 5000 mg/kg and in female rats at 2500 and 5000 mg/kg.  Testes weights were elevated in male rats at 5000 mg/kg.  Kidney effects occurred in males at all dose levels, and are indicative of alpha-2u-globulin nephropathy.  Alpha-2u-globulin nephropathy, also known as hyaline droplet nephropathy, results from the formation of complexes with a naturally occurring protein (alpha-2u-globulin) in the kidneys of male rats.  These complexes can accumulate in the proximal renal tubule and may produce species-specific histopathological changes.  These kidney effects are specific to male rats and are not considered to be of biological relevance to humans.

Dose-related changes in hematology or serum chemistry parameters were observed and were consistent with the changes seen in the liver.  Histological findings of hepatocellular hypertrophy (liver cell enlargement) were seen in livers of both sexes in all dose groups.  These findings are believed to have been a compensatory response and not an indication of toxicity.  Additionally, these liver effects were reversible and occurred only at high doses that are not typical of hydrocarbon exposures for humans.  Other treatment-related effects were mucosal thickening and other signs of irritation of the stomach and anus which appear to be the direct result of high dose intubation of a the locally irritating test substance.  These effects are believed to have been a compensatory response to local irritation and not an indication of toxicity.  All treatment-related effects were reversible within the 4-week recovery period.  Based on the results, the No Observed Adverse Effect Level (NOAEL) for the 90-day study was greater than 5000 mg/kg/day.

Endpoint conclusion
Endpoint conclusion:
no adverse effect observed
Dose descriptor:
NOAEL
5 000 mg/kg bw/day
Study duration:
subchronic
Species:
rat
Quality of whole database:
1 key study (short-term) available, 1 key study (sub-chronic) available from a structural analogue.

Repeated dose toxicity: inhalation - systemic effects

Link to relevant study records
Reference
Endpoint:
sub-chronic toxicity: inhalation
Type of information:
read-across from supporting substance (structural analogue or surrogate)
Adequacy of study:
key study
Study period:
1980
Reliability:
1 (reliable without restriction)
Rationale for reliability incl. deficiencies:
other: Acceptable, well-documented study report equivalent or similar to OECD guideline 413.
Justification for type of information:
A discussion and report on the read across strategy is given as an attachment in IUCLID Section 13.
Reason / purpose for cross-reference:
read-across: supporting information
Qualifier:
equivalent or similar to guideline
Guideline:
OECD Guideline 413 (Subchronic Inhalation Toxicity: 90-Day Study)
GLP compliance:
not specified
Species:
rat
Strain:
other: albino
Sex:
male/female
Details on test animals or test system and environmental conditions:
TEST ANIMALS
- Source: Shell Toxicology Laboratory Breding Unit
- Age at study initiation: 10-13 weeks
- Housing: three of one sex per cage
- Diet (e.g. ad libitum): ad libitum except during exposure
- Water (e.g. ad libitum): ad libitum

During the period of the test the laboratory temperature varied between 19.4°C and 26.1°C and the relative humidity between 37% and 74%.
Barometric pressure was within the range 753 to 768 mm Hg


Route of administration:
inhalation: vapour
Type of inhalation exposure:
whole body
Vehicle:
other: no data
Details on inhalation exposure:
The atmospheres were generated by completely evaporating the solvent into the streams of ventilating air entering the chambers using micrometering pumps and vaporizers. The vaporizers consisted of electrically heated quartz tubes whose surface temperatures were adjusted during preliminary experiments to the minimal for complete evaporation of the solvent.

Each chamber was constructed of aluminum, with a volume of 1 m3 and was ventilated by air drawn from the laboratory through dust filters. The exhaust ducts from each chamber entered a common exhaust duct through which the air was drawn by a fan situated on the roof of the laboratory.

The total air flow rate through the main duct exhausting all four chambers was recorded continuously throughout the test by means of an electro—anemometer mounted in the duct. Slight adjustments were made as required to compensate for the effects of wind at the efflux point. The total flow rate was maintained at 2.0 + 0.03 m3 ∙min- 1. The individual flow rates through each chamber were balanced before the exposures began but were not checked further throughout the test since any significant changes would have been detected by the resulting changes in toxicant concentration. The flow rates were adjusted to 0.50 m3 ∙min- 1.
Analytical verification of doses or concentrations:
yes
Details on analytical verification of doses or concentrations:
The test atmospheres were analyzed sequentially by means of a total hydrocarbon analyzer fitted with a flame-ionisation detector (Beckman 109A). The analyzer was calibrated during the test by means of known concentrations of SHELLSOL TD, prepared in a Teflon FEP gas sampling bag.

The recorder traces from the analyser were examined daily and a ‘daily mean concentration’ value was estimated by visual inspection. The daily mean concentrations for each of the test atmospheres were then ‘pooled’ to give weekly mean concentrations. The overall means of the weekly mean concentrations are given below:
Nominal concentration Observed concentration
(mg/m3) (mg/m3) (ppm)
10400* 10186 SD 327 1444
5200 5200 SD 207 737
2600 2529 SD 116 359
*83% saturated.

The desired concentrations of solvent in the test atmospheres were reached within 10 mm of the start of each exposure period. They then stayed remarkably constant throughout the 6 h exposure period.
Duration of treatment / exposure:
Six hours/day
Frequency of treatment:
five days/week for 13 weeks
Remarks:
Doses / Concentrations:
0, 2600, 5200, 10400 mg/m3
Basis:
nominal conc.
No. of animals per sex per dose:
6 animals/sex/dose (total of 12 animals/dose)
Control animals:
yes, sham-exposed
Details on study design:
The start and finish of the experiment was staggered in order that the optimum number of animals could be examined histopathologically after exposure. On each of four consecutive days, four male and four female rats per chamber were started on the experiment. The remaining two males and two females were started the next day. Thirteen weeks later, four male and four female rats per chamber were removed from the experiment for pathological examination on each of four consecutive days. The remaining two males and two females were removed the next day.
Observations and examinations performed and frequency:
CAGE SIDE OBSERVATIONS: Yes
- Time schedule for examinations: daily

DETAILED CLINICAL OBSERVATIONS: Yes


BODY WEIGHT: Yes
- Time schedule for examinations: weekly


FOOD CONSUMPTION:
- Food consumption for each animal determined weekly: Yes


FOOD EFFICIENCY:
- Body weight gain in kg/food consumption in kg per unit time X 100 calculated as time-weighted averages from the consumption and body weight gain data: Yes / No / No data


WATER CONSUMPTION: Yes
- Time schedule for examinations: weekly


OPHTHALMOSCOPIC EXAMINATION: No



HAEMATOLOGY: Yes
- Time schedule for collection of blood: 18h after the last 13 week exposure
- How many animals: all


CLINICAL CHEMISTRY: Yes
- Time schedule for collection of blood: 18h after the last 13 week exposure
- How many animals: all



URINALYSIS: Yes / No / No data
- Time schedule for collection of urine:
- Metabolism cages used for collection of urine: Yes / No / No data
- Animals fasted: Yes / No / No data
- Parameters checked in table [No.?] were examined.


NEUROBEHAVIOURAL EXAMINATION: No



OTHER:
Sacrifice and pathology:
GROSS PATHOLOGY: Yes
HISTOPATHOLOGY: Yes for all animals exposed to the high and medium concentrations, plus the control animals. Kidneys of low concentration males were also examined.
Other examinations:
Organ weights
After post-mortem examinations the following organs were weighed:
Brain
Liver
Heart
Spleen
Kidneys
Testes

Histopatholgy. Tissues taken for histological examination were:

Mammary gland (posterior site with skin)
Mesenteric lymph node
Pancreas
Stomach
Intestine at 5 levels
Caecum
Spleen
Liver (middle, left and triangular lobes)
Adrenals
Kidneys
Ovaries or testes
Uterus or prostate
Seminal vesicles
Urinary bladder
Thyroid (with oesophagus and trachea)
Trachea (mid course and bifurcation)
Heart
Lungs
Nasal cavity
Thymus
Eye and lacrimal glands
Salivary gland (submaxillary)
Brain
Spinal cord (thoracic)
Pituitary
Tongue
Sciatic nerves
Muscle (femoral)
Knee joint and femur
Plus any other macroscopic lesion in any tissues.
The samples marked were held in 4% neutral formalin and only processed for histological examination if indicated by clinical or other pathological findings.
Statistics:
Body and organ weights were analysed by covariance analysis using initial body weight as the covariate. Reported means were adjusted for initial body weight if a significant covariance relationship existed: where no significant covariance relationship was found, unadjusted means were reported.

Organ weights were further examined by covariance analysis using the terminal body weight as the covariate. The organ weight means are reported as adjusted for terminal body weight if a significant covariance relationship existed. Although not a true covariance analysis (because the terminal body weights are dependent upon treatment), the analysis does provide an aid to the interpretation of organ weights when there are differences in terminal body weights. The analysis attempts to predict what the organ weights would have been, had all the animals had the same terminal body weight.
Clinical, chemical and haematological parameters were examined using analysis of variance.

The analysis allowed for the fact that animals were multihoused. Differences in response can be affected by cage environment as well as by treatment but this effect is minimal in a study of this duration.
The significance of any difference between treated and control group means was tested using the Williams t test (1971, 1972). However, if a monotonic dose response could not be assumed Dunnett’s test (1964) was used.
Clinical signs:
no effects observed
Mortality:
no mortality observed
Body weight and weight changes:
no effects observed
Food consumption and compound intake (if feeding study):
no effects observed
Food efficiency:
not examined
Water consumption and compound intake (if drinking water study):
no effects observed
Ophthalmological findings:
not examined
Haematological findings:
no effects observed
Clinical biochemistry findings:
no effects observed
Urinalysis findings:
not examined
Behaviour (functional findings):
not examined
Organ weight findings including organ / body weight ratios:
no effects observed
Gross pathological findings:
no effects observed
Histopathological findings: non-neoplastic:
no effects observed
Histopathological findings: neoplastic:
no effects observed
Details on results:
No deaths were recorded and clinical signs of toxicity were absent in the low and medium exposure groups; the high exposure groups were slightly lethargic when examined up to one hour after cessation of exposure. Body weight gain was slightly reduced in all female groups and in high exposure males. Water intake was increased in the high exposure males only.

Female aspartate amino transferase and alanine amino transferase were decreased in all female groups exposed to SHELLSOL-TD. No pathological changes were detected which could explain the observed decreases in these enzymes. In view of this lack of supporting evidence and the fact that the control values for these two parameters were high when compared with historical controls in the laboratory, these changes were not considered toxicologically significant.

Male alkaline phosphatase, potassium, chloride and albumin were increased at the high exposure level. These were considered to represent biological variation in the rat and were not considered treatment-related.

Male kidney weights were increased at all exposure levels. Hyaline intracytoplasmic inclusions and an increased incidence of tubular degeneration and/or dilatation were seen in the cortical tubules of all exposed males. These are a common effect observed in repeated-dose animal studies with hydrocarbon solvents. These kidney changes have been identified to result from an alpha2u-globulin-mediated process that because of its sex and species specificity, is not regarded as relevant to humans.

A low grade anemia was evident in all males exposed to SHELLSOL TD, characterized by slight reductions in haemoglobin, packed cell volume and total erythrocyte counts. Splenic weight was increased in the high concentration males. These changes were not seen in females and were not considered dose-related and therefore considered not toxicologically relevant.

Male and female liver weights were increased at the high and medium exposures, and male liver weights at the low exposures also. No lesions were identified histologically in the livers of treated animals that could account for the increased weight. This change was considered a physiological response to exposure rather than a toxic response and as such is not of toxicological significance.
Key result
Dose descriptor:
NOAEC
Effect level:
> 10 400 mg/m³ air (nominal)
Sex:
male/female
Basis for effect level:
other: No treatment-related mortality or significant adverse clinical effects occurred.
Critical effects observed:
not specified
Conclusions:
The NOAEC for SHELLSOL TD is 10186 mg/m3 (actual) (1444 ppm) under the test conditions of this study.
Executive summary:

SHELLSOL TC was administered by inhalation to albino rats for 6 hours/day, 5 days/week for 13 weeks at nominal vapor concentrations of 10400 mg/m3, 5200 mg/m3, and 2600 mg/m3 to assess inhalation toxicity.  No mortality or treatment-related effects in any of the hematology and serum chemistry values were observed.  Liver and kidney weights were increased in male rats at all exposure levels, male heart weights were increased at the highest exposure level and liver and kidney weights were increased in female rats at 10400 mg/m3.  In addition, the male rats exposed to SHELLSOL TC at all concentrations showed tubular degeneration and hyaline inclusion-droplets in the epithelium.  There was also scattered degeneration of the proximal renal tubules which showed cytoplasmic pallor and shrinkage. Occasionally the degenerate tubules were surrounded by a lymphocyte infiltrate. Many tubules also showed dilatation of the cortico-medullary junction, the dilated tubule being filled with a flocculent eosinophilic material. The kidney effects observed in male rats are indicative of alpha-2u-globulin nephropathy.  Alpha-2u-globulin nephropathy, also known as hyaline droplet nephropathy, results from the formation of complexes with a naturally occurring protein (alpha-2u-globulin) in the kidneys of male rats.  These complexes can accumulate in the proximal renal tubule and may produce species-specific histopathological changes.  These kidney effects are specific to male rats and are not considered to be of biological relevance to humans.  Histopathological examination did not reveal any abnormalities that were considered treatment related.  As there were no pathologic changes, changes in organ weights mentioned above were judged to have been compensatory rather than toxic effects.  Based on these results, the No Observed Adverse Effect Concentration (NOAEC) was greater than or equal to 10400 mg/m3.

Endpoint conclusion
Endpoint conclusion:
no adverse effect observed
Dose descriptor:
NOAEC
10 400 mg/m³
Study duration:
subchronic
Species:
rat
Quality of whole database:
1 key and 3 supporting read across studies available from structural analogues.

Repeated dose toxicity: inhalation - local effects

Endpoint conclusion
Endpoint conclusion:
no study available

Repeated dose toxicity: dermal - systemic effects

Endpoint conclusion
Endpoint conclusion:
no study available

Repeated dose toxicity: dermal - local effects

Endpoint conclusion
Endpoint conclusion:
no study available

Additional information

There is no substance specific sub-chronic data available for Decane. However, sub-chronic data is available for structural analogues Hydrocarbons, C9 -C11, isoalkanes, cyclics, <2% aromatics, Hydrocarbons, C10 -C12, isoalkanes, Hydrocarbons, C10 -C13, n-alkanes, isoalkanes, cyclics, <2% aromatics, and Isododecane. Additionally, OECD Guideline 408 (Repeated Dose 90-Day Oral Toxicity Study in Rodents) tests are proposed for structural analogues, Hydrocarbons, C9-C11, isoalkanes, cyclics, <2% aromatics and Hydrocarbons, C14-C19, isoalkanes, cyclics, <2% aromatics. This data is read across to based on analogue read across and a discussion and report on the read across strategy is provided as an attachment in IUCLID Section 13.

 

This endpoint will be updated subsequent to ECHA's approval of the testing proposals and availability of data upon completion of the studies.

Oral: 

 

Decane

In a key study (Sasol, 1995) groups of 10 male and 10 female Sprague Dawley rats were dosed with decane daily by gavage at exposure levels of 0, 25, 150, or 1000 mg/kg/day. Males were dosed from the 14th day prior to mating, during mating until the end of the mating period. Females were dosed from the 14th day prior to the start of the mating phase to day 4 of lactation.  Oral dosing of decane produced no evidence of any adverse effects on clinical observations, organ weights, gross pathology, neurobehavioral activity, clinical chemistry or hematology endpoints. Evidence of irritation of the nonglandular mucosa of the stomach was observed, but was considered an artifact of the dosing method and not attributed to the inherent toxicity of the test material.  Based on these data, the no-observable- adverse effect level (NOAEL) for repeated dose toxicty was >=1000 mg/kg/day, the highest dose tested. 

 

Hydrocarbons, C10-C13, n-alkanes, isoalkanes, cyclics, <2% aromatics

In a key study (Exxon, 1991), the test material (Hydrocarbons, C10-C13, n-alkanes, isoalkanes, cyclics, <2% aromatics) was administered by oral gavage to rats at concentrations of 500, 2500 and 5000 mg/kg, 7 days a week for 13 weeks to assess the subchronic toxicity.  An additional group of animals, dosed at 5000 mg/kg/day, was held for 4 weeks to assess reversibility.  No treatment-related mortality was observed; however, male body weights were decreased while food consumption increased in the 2500 and 5000 mg/kg dose groups.  Liver weights were elevated in male and female rats at 2500 and 5000 mg/kg/day.  Adrenal weights were significantly increased in male and female rats at 5000 mg/kg and in female rats at 2500 and 5000 mg/kg.  Testes weights were elevated in male rats at 5000 mg/kg.  Kidney effects occurred in males at all dose levels, and are indicative of alpha-2u-globulin nephropathy.  Alpha-2u-globulin nephropathy, also known as hyaline droplet nephropathy, results from the formation of complexes with a naturally occurring protein (alpha-2u-globulin) in the kidneys of male rats.  These complexes can accumulate in the proximal renal tubule and may produce species-specific histopathological changes.  These kidney effects are specific to male rats and are not considered to be of biological relevance to humans.

Dose-related changes in hematology or serum chemistry parameters were observed and were consistent with the changes seen in the liver.  Histological findings of hepatocellular hypertrophy (liver cell enlargement) were seen in livers of both sexes in all dose groups.  These findings are believed to have been a compensatory response and not an indication of toxicity.  Additionally, these liver effects were reversible and occurred only at high doses that are not typical of hydrocarbon exposures for humans.  Other treatment-related effects were mucosal thickening and other signs of irritation of the stomach and anus which appear to be the direct result of high dose intubation of a the locally irritating test substance.  These effects are believed to have been a compensatory response to local irritation and not an indication of toxicity.  All treatment-related effects were reversible within the 4-week recovery period.  Based on the results, the No Observed Adverse Effect Level (NOAEL) for the 90-day study was greater than 5000 mg/kg/day.

Inhalation:

 

Hydrocarbons, C9-C11, isoalkanes, cyclics, <2% aromatics

In a supporting study (ExxonMobil, 1978), the test material (Hydrocarbons, C9-C11, isoalkanes, cyclics, <2% aromatics) was administered by inhalation to Sprague-Dawley rats for 6 hours/day, 5 days/week for 12 weeks at nominal vapor concentrations of 300 ppm and 900 ppm to assess subchronic inhalation toxicity.  Ten animals per sex per group were examined at 4 weeks, 8 weeks and all survivors were sacrificed and examined at 12 weeks. Male body weight gain was significantly decreased at 900 ppm.  There were no treatment-related effects in any of the hematology and serum chemistry values.  Liver and kidney weights were increased in male rats at 900 ppm, and adrenal weights were increased in female rats at 900 ppm.  The kidney effects observed in male rats are indicative of alpha-2u-globulin nephropathy.  Alpha-2u-globulin nephropathy, also known as hyaline droplet nephropathy, results from the formation of complexes with a naturally occurring protein (alpha-2u-globulin) in the kidneys of male rats.  These complexes can accumulate in the proximal renal tubule and may produce species-specific histopathological changes.  These kidney effects are specific to male rats and are not considered to be of biological relevance to humans.  Histopathological examination did not reveal any abnormalities that were considered treatment related.  As there were no pathologic changes, changes in organ weight to body weight ratios were judged to have been compensatory rather than toxic effects.  Based on these results, the No Observed Adverse Effect Level (NOAEL) was greater than or equal to 900 ppm (>=5220 mg/m3).

Hydrocarbons, C10-C12, isoalkanes, <2% aromatics

In a key study (Shell, 1980), the test material (Hydrocarbons, C10-C12, isoalkanes, <2% aromatics) was administered by inhalation to albino rats for 6 hours/day, 5 days/week for 13 weeks at nominal vapor concentrations of 10400 mg/m3, 5200 mg/m3, and 2600 mg/m3to assess inhalation toxicity.  No mortality or treatment-related effects in any of the hematology and serum chemistry values were observed.  Liver and kidney weights were increased in male rats at all exposure levels, male heart weights were increased at the highest exposure level and liver and kidney weights were increased in female rats at 10400 mg/m3.  In addition, the male rats exposed to the test material at all concentrations showed tubular degeneration and hyaline inclusion-droplets in the epithelium.  There was also scattered degeneration of the proximal renal tubules which showed cytoplasmic pallor and shrinkage. Occasionally the degenerate tubules were surrounded by a lymphocyte infiltrate. Many tubules also showed dilatation of the cortico-medullary junction, the dilated tubule being filled with a flocculent eosinophilic material. The kidney effects observed in male rats are indicative of alpha-2u-globulin nephropathy.  Alpha-2u-globulin nephropathy, also known as hyaline droplet nephropathy, results from the formation of complexes with a naturally occurring protein (alpha-2u-globulin) in the kidneys of male rats.  These complexes can accumulate in the proximal renal tubule and may produce species-specific histopathological changes.  These kidney effects are specific to male rats and are not considered to be of biological relevance to humans.  Histopathological examination did not reveal any abnormalities that were considered treatment related.  As there were no pathologic changes, changes in organ weights mentioned above were judged to have been compensatory rather than toxic effects.  Based on these results, the No Observed Adverse Effect Concentration (NOAEC) was greater than or equal to 10400 mg/m3.

 

In a supporting study (Exxon, 1978), the test material (C10-C12, isoalkanes, <2% aromatics) was administered by inhalation to rats at vapor concentrations of 300 or 900 ppm for 6 hours/day, 5 days/week for 12 weeks.  No treatment-related effects on mortality were observed and there were no significant alterations in hematology or clinical chemistry parameters.  Body weights were decreased and kidney weights were elevated in male rats at 300 and 900 ppm.  Relative mean liver weights were elevated in males at 900 ppm, but no changes were noted in histopathology.  Under the conditions of this study, the No Observed Adverse Effect Level (NOAEL) is greater than 900 ppm (> 5220 mg/m3).

 

Isododecane

A supporting subchronic inhalation toxicity study (Bayer, 1981) with isododecane was carried out by exposing groups of twenty male and twenty female rats to atmospheres containing 0, 200, 600, or 1800 ppm isododecane 6 hours a day, 5 days a week, for a period of 13 weeks. No treatment-related effects on mortality were observed and there were no significant alterations in hematological, blood chemical or urinary values, or in organ weights, that were toxicologically relevant. An increased incidence of tubular nephrosis was found in the kidneys of males at all levels of exposure. These lesions were characterized by a loss of cytoplasmic eosinophilia and striation, a loss of brush border, and an increases cellular and nuclear size of epithelium of mainly the proximal tubules. The kidney effects observed in male rats are indicative of alpha-2u-globulin nephropathy.  Alpha-2u-globulin nephropathy, also known as hyaline droplet nephropathy, results from the formation of complexes with a naturally occurring protein (alpha-2u-globulin) in the kidneys of male rats.  These complexes can accumulate in the proximal renal tubule and may produce species-specific histopathological changes.  These kidney effects are specific to male rats and are not considered to be of biological relevance to humans.  Based on these results, the No Observed Adverse Effect Level (NOAEL) was greater than or equal to 1800 ppm (10440 mg/m3).

Justification for classification or non-classification

Based on available data, Decane does not meet the criteria for classification for repeated dose toxicity (STOT-RE) under the new Regulation (EC) 1272/2008 on classification, labeling and packaging of substances and mixtures (CLP).