Registration Dossier

Data platform availability banner - registered substances factsheets

Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.

The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.

Diss Factsheets

Administrative data

Link to relevant study record(s)

Description of key information

Key value for chemical safety assessment

Bioaccumulation potential:
low bioaccumulation potential

Additional information

Two articles are available on the metabolism of the test substance.

In the article by Feller et al. (1977) investigations were carried out with radiolabeled D(-)-ephedrine and L(+)-ephedrine to establish whether differences exist in their metabolic fate in the rabbit, in vivo and in vitro. In liver microsomal preparations, D(-)-ephedrine was metabolized at a faster rate than L(+)-ephedrine, benzoic acid was formed from D(-)-ephedrine at a rate about three times greater than from the L(+)-isomer, and the relative amounts of norephedrine and 1-phenyl-1,2-propranediol formed from both ephedrine isomers were nearly identical throughout the entire incubation period. In vivo, both ephedrine isomers were extensively metabolized and the majority of total radioactivity(71-91%) was excreted within 24 hr. 47-50% of the urinary 14C was attributable to hippuric acid and benzoic acid from L(+)- and D(-)-ephedrine, from 4 to 16% of the total 14C obtained with both isomers was accountable as 1-phenyl-1,2-propanediol, either free or as a glucuronide conjugate, no appreciable quantities of sulfate or glucuronide conjugates of p-hydroxylated metabolites of ephedrine or norephedrine was detectable, and small amounts (<4% of metabolites corresponding to unchanged ephedrine, norephedrine, or 1-hydroxy-l-phenyl-2- propanone were found in urine of animals given either isomer. These experiments indicate that the major pathway for the biotransformation of D(-)-ephedrine and L(+)-ephedrine involves N-demethylation and oxidative deamination of the side chain.

In the article by Inoue et al. (1990) urinary metabolites of methylephedrine and their excretion after oral administration to rat and human volunteers have been studied. The unchanged drug, ephedrine, norephedrine, their aromatic hydroxylated compounds and methylephedrine N-oxide were found in rat urine. The same metabolites, except the p-hydroxylated metabolites, were detected in human urine. The most abundant metabolite in rat urine was methylephedrine N-oxide, and in human urine was the unchanged drug. Metabolites excreted in three days after administration of the drug to rat amounted to about 54% of the dose and those after administration to man, 70-72%.