Registration Dossier
Registration Dossier
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 700-571-2 | CAS number: -
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data

Endpoint summary
Administrative data
Description of key information
Testing of terrestrial toxicity does not appear scientifically necessary.
Due to high lipophilicity of NExBTL renewable diesel, sediments and soils are the target compartments for the test material when released into environment, however due to rapid biodegradation this risk may be mitigated significantly.
According to chemical safety assessment, NExBTL renewable diesel does not pose a risk to other compartments (water/sediment). It was not found to be acutely toxic to any of the aquatic species tested (algae, crustacea, fish and sediment-dwelling amphipod). In an acute toxicity test with a sediment-dwelling amphibod Corophium volutator, the LC50 of the test material was 1200 mg/kg (d.w.), which equals 3000 mg/l (calculated with density of the solids obtained from the Table R.16 -16). The NOEC was 373 mg/kg (d.w.), equivalent to 933 mg/l. Furthermore, the test material was found readily biodegradable in an OECD 301B CO2evolution test.
Numerous studies have also shown that alkanes are readily biodegradable in soils and sediments (Hoeppel RE et al 1991, Hawle-Ambrosch et al 2007, Miethe D et al 1994, Salanitro J 2001, Sugiura et al 1996). Also, experimental results indicated that n-C10-C20-alkanes did not have adverse effects on the growth of corn Zea maysand red beans Phaseolus nipponesi (Baek et al., 2004).
The only use that may lead to soil exposure is in tarmac (SU8/PC9b/PROC23/ERC8e) and this use is infrequent. Based on these facts, the expected soil exposure will be occasional, duration of the exposure will be short and the effects to soil organisms will be low.
Since biodegradability of compounds is assumed more rapid in soils compared to anaerobic and low temperature sediments (half-lives were estimated 1000 times higher in sediments than in soils using EUSES), the exposure time and thus the risk posed by the test material to the organisms is likely to be lower in soils than in sediments.
Mammalian toxicity testing indicated that NExBTL renewable diesel has a low potential to cause adverse long-term or reproductive effects. Based on this fact, in addition to low bioavailability via food chain, NExBTL renewable diesel is not expected to cause toxic effects to birds.
REFERENCES:
Baek et al, 2004, Effects of crude oil components, oil components and bioremediation on plant growth, Journal of Environmental Science and Health A39(9): 2465-2472.
Hawle-Ambrosch E, Ripe W, Dornmayr-Pfaffenhuemer M, Radax C, Holzinger A and Stan-Lotter H, 2007, Biodegradation of fuel oil hydrocarbons by a mixed bacterial consortium in sandy and loamy soils, Biotechnology Journal 2(12), 1564-1568.
Hoeppel RE, Hichee RE and Arthur MF, 1991, Bioventing soils contaminated with petroleum hydrocarbons. J. Indust. Microbiol. 8, 141-146.
Miethe D, Riis V and Babel W, 1994, The relationship between the microbial activity of the autochthonous microorganisms of pristine and contaminated soils and their potential for the degradation of mineral oil hydrocarbons. Acta Biotechnol. 14,131-140.
Sugiura K, Ishihara M, Shimauchi T and Harayama S, 1997, Physicochemical properties and biodegradability of crude oil Environmental Science and Technology 31(1), 45-51.
Additional information
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.
