Registration Dossier
Registration Dossier
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 247-987-6 | CAS number: 26762-92-5
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data

Additional physico-chemical information
Administrative data
- Endpoint:
- other: bond dissociation energies
- Type of information:
- other: calculation of bond-strengths
- Adequacy of study:
- supporting study
- Reliability:
- 2 (reliable with restrictions)
- Rationale for reliability incl. deficiencies:
- other: published data, non GLP
Data source
Reference
- Reference Type:
- publication
- Title:
- A Reassessment of the Bond Dissociation Energies of Peroxides. An ab Initio Study
- Author:
- Robert D. Bach, Philippe Y. Ayala, H. B. Schlegel
- Year:
- 1 996
- Bibliographic source:
- J. Am. Chem. Soc. 1996, 118, 12758-12765
Materials and methods
Results and discussion
- Results:
- The strength of the O-O bond is of fundamental importance in a variety of chemical processes.
Traditionally, a value of 34 kcal/mol has been ascribed to a generic O-O bond dissociation energy. The present, high-level ab initio calculations indicate that the average O-O bond energy is significantly higher, ca. 45 kcal/mol, and that the bond energy is sensitive to the bonding environment. Calculations at the G2 level of theory give bond dissociation enthalpies at 298 K of 50 kcal/mol for HOOH, 45 kcal/mol for CH3OOH, 39 kcal/mol for CH3OOCH3, and 48 kcal/mol for HC(O)OOH and CH3C(O)OOH. The G2(MP2) results are similar and, additionally, give bond dissociation enthalpies of 38 kcal/mol for diacetyl peroxide, 49 kcal/mol for trifluoroperoxyacetic acid, 23 kcal/mol for isopropenyl hydroperoxide, and 22 kcal/mol for peroxynitrous acid.
Any other information on results incl. tables
Generally Accepted Activation Parameters for Peroxide Bond Homolysisa |
||
Peroxide |
ΔH(kcal/mol) |
ΔS[cal/(mol K)] |
HO-OH |
47 |
11 |
t-BuO-OH |
41 |
12 |
RO-OR |
36 |
14 |
PhCO-O-t-Bu |
35 |
8 |
RCOO-OCOR |
30 |
6 |
ROCO-OCOR |
29 |
5 |
Referenced from:
Baldwin, A. C.Ibid.; p 97.
Curci, R.; Edwards, J. O. InCatalytic Oxidations with H2O2as oxidants; Strukul, G., Ed.; Series: Catalysis by Metal Complexes; Reidel-Kluwer: Dordrecht, The Netherlands, 1992; Chapter 3.
Applicant's summary and conclusion
- Conclusions:
- The strength of the O-O bond in peroxides decreases from 50 kcal/mol for HOOH, 45 kcal/mol for CH3OOH, 39 kcal/mol for CH3OOCH3, and 48 kcal/mol for HC(O)OOH and CH3C(O)OOH.
- Executive summary:
The strength of the O-O bond is of fundamental importance in a variety of chemical processes with organic peroxides. Traditionally, a value of 34 kcal/mol has been ascribed to a generic O-O bond dissociation energy. The present, high-level ab initio calculations indicate that the average O-O bond energy is significantly higher, ca. 45 kcal/mol, and that the bond energy is sensitive to the bonding environment. Calculations at the G2 level of theory give bond dissociation enthalpies at 298 K of 50 kcal/mol for HOOH, 45 kcal/mol for CH3OOH, 39 kcal/mol for CH3OOCH3, and 48 kcal/mol for HC(O)OOH and CH3C(O)OOH. The G2(MP2) results are similar and, additionally, give bond dissociation enthalpies of 38 kcal/mol for diacetyl peroxide, 49 kcal/mol for trifluoroperoxyacetic acid, 23 kcal/mol for isopropenyl hydroperoxide, and 22 kcal/mol for peroxynitrous acid.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.
