Regulation (EU) No 528/2012 concerning the making available on the market and use of biocidal products

DRAFT RISK ASSESSMENT OF A BIOCIDAL PRODUCT FOR UNION AUTHORISATION APPLICATIONS

(submitted by the applicant)

PESGUARD[®] GEL

Product type 18

(E)-1-(2-Chloro-1,3-thiazol-5-ylmethyl)-3-methyl-2nitroguanidine (Clothianidin) & Pyriproxyfen

Case Number in R4BP: BC-HS027052-37

Evaluating Competent Authority: NL

Date: October 2020

1 Table of Contents

1	CONCLUS	ION	4
2	ASSESSM	ENT REPORT	5
2	.1 Sumi	MARY OF THE PRODUCT ASSESSMENT	5
2		Administrative information	
	2.1.1	Identifier of the product	
	2.1.1.1	Authorisation holder	
	2.1.1.2	Manufacturer(s) of the product	
	2.1.1.3	Manufacturer(s) of the active substance(s)	
		Product composition and formulation	
	2.1.2.1	Identity of the active substance	
	2.1.2.2	Candidate(s) for substitution	
	2.1.2.3	Qualitative and quantitative information on the composition of the biocidal product	
	2.1.2.4	Qualitative and quantitative information on the composition of the biocidal product family ²	
	2.1.2.5	Information on technical equivalence	
	2.1.2.6	Information on the substance(s) of concern	
	2.1.2.7	Information on endocrine disrupting properties	
	2.1.2.8	Type of formulation	
	2.1.3	Hazard and precautionary statements	
		Authorised use(s)	
	2.1.4.1	Use description	
	2.1.4.2	Use-specific instructions for use	
	2.1.4.3	Use-specific risk mitigation measures	11
	2.1.4.4	Where specific to the use, the particulars of likely direct or indirect effects, first aid instructions a	
	emerge	ncy measures to protect the environment	
	2.1.4.5	Where specific to the use, the instructions for safe disposal of the product and its packaging	11
	2.1.4.6	Where specific to the use, the conditions of storage and shelf-life of the product under normal	
		ons of storage	
		General directions for use	
	2.1.5.1	Instructions for use	
	2.1.5.2	Risk mitigation measures	
	2.1.5.3	Particulars of likely direct or indirect effects, first aid instructions and emergency measures to pro	
		ironment	
	2.1.5.4 2.1.5.5	Instructions for safe disposal of the product and its packaging Conditions of storage and shelf-life of the product under normal conditions of storage	
		Other information	
		Packaging of the biocidal product	
		Documentation	
	2.1.8.1 2.1.8.2	Access to documentation	
	2.1.8.2	Similar conditions of use	
2		SSMENT OF THE BIOCIDAL PRODUCT	
2		Intended use(s) as applied for by the applicant	
		Physical, chemical and technical properties	
		Physical hazards and respective characteristics	
		Methods for detection and identification	
		Efficacy against target organisms	
	2.2.5.1 2.2.5.2	Function and field of use Organisms to be controlled and products, organisms or objects to be protected	
	2.2.5.2	Effects on target organisms, including unacceptable suffering	
	2.2.5.4	Mode of action, including time delay	
	2.2.5.5	Efficacy data	
	2.2.5.6	Occurrence of resistance and resistance management	
	2.2.5.7	Known limitations	

	2.2.5		
	2.2.5		ct(s)
		50	
	2.2.6	Risk assessment for human health	
	2.2.6		
	2.2.6		
	2.2.6		
	2.2.7	Risk assessment for animal health	72
	2.2.8	Risk assessment for the environment	72
	2.2.8	3.1 Effects assessment on the environment	74
	2.2.8	3.2 Exposure assessment	80
	2.2.8	3.3 Risk characterisation	88
	2.2.9	Measures to protect man, animals and the environment	93
	2.2.10	Assessment of a combination of biocidal products	93
	2.2.11	Comparative assessment	93
	2.2.1		93
	2.2.1	1.2 Screening phase of comparative assessment	93
3	ANNEX	KES	96
-			
		ST OF STUDIES FOR THE BIOCIDAL PRODUCT	
	3.2 Ou	UTPUT TABLES FROM EXPOSURE ASSESSMENT TOOLS	100
	3.3 Ne	EW INFORMATION ON THE ACTIVE SUBSTANCE	100
	3.4 Re	ESIDUE BEHAVIOUR	100
		JMMARIES OF THE EFFICACY STUDIES (B.5.10.1-XX)	

1 CONCLUSION

The product $\textit{Pesguard}^{\texttt{®}}$ Gel is a ready to use bait for use by professionals against cockroaches.

The efficacy package provided demonstrates that *Pesguard*[®] Gel is effective against German cockroaches (*Blattella germanica*), Brown banded cockroaches (*Supella longipalpa*), Oriental cockroaches (*Blatta orientalis*) and American Cockroaches (*Periplaneta americana*) both as nymphs and adults. The gel should be applied as a number of spots of approximately 4 mm diameter (each spot comprising approximately 0.032g of bait).

The information on composition, physical and chemical properties and analytical methods is acceptable. The product contains 0.513% technical clothianidin and 0.507% technical pyriproxyfen, is stable for 2 years at ambient temperatures and is not sensitive to elevated temperatures or humidity. The product should however be protected from frost and stored away from direct sunlight.

With regard to physical and chemical hazards, *Pesguard*[®] Gel is not classified.

The content of the active substances can be monitored using a validated HPLC-UV method.

Based on the human health risk assessment, no adverse health effects are expected after use of $Pesguard^{(R)}$ Gel in accordance to the intended use.

It can be concluded that the use of $\textit{Pesguard}^{\texttt{®}}$ Gel as proposed presents an acceptable risk to the environment.

2 ASSESSMENT REPORT

2.1 Summary of the product assessment

2.1.1 Administrative information

2.1.1.1 Identifier of the product

Identifier	Country (if relevant)
Pesguard [®] Gel	European Union

Pesguard[®] *Gel* was originally referred to by the experimental formulation known as X-7472-14. This was later changed to a "registration code number"

2.1.1.2 Authorisation holder

Name and address of the	Name	Sumitomo Chemical Agro Europe S.A.S.	
authorisation holder	Address	Parc d'Affaires de Crécy 10A Rue de la Voie Lactée 69370 Saint Didier au Mont d'Or France	
Pre-submission phase started on	14 Decem	14 December 2015	
Pre-submission phase concluded on	26 Januar	26 January 2016	
Authorisation number			
Date of the authorisation			
Expiry date of the authorisation			

2.1.1.3 Manufacturer(s) of the product

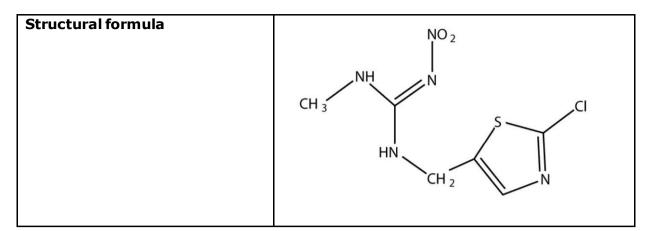
Name of manufacturer	McLaughlin Gormley King Company (MGK)
Address of manufacturer	7325 Aspen Lane North Minneapolis MN 55428 United States
Location of manufacturing sites	4001 Peavey Road Chaska MN 55318 United States
	7325 Aspen Lane North Minneapolis MN 55428 United States

2.1.1.4 Manufacturer(s) of the active substance(s)

Active substance	(E)-1-(2-Chloro-1,3-thiazol-5-ylmethyl)-3-methyl-2- nitroguanidine (Clothianidin)
Name of manufacturer	Sumitomo Chemical Company, Ltd
Address of manufacturer	27-1, Shinkawa 2-chome Chuo-ku 104-8260 Tokyo Japan
Location of manufacturing sites	Oita Works 2200, Tsurusaki Oita City 870-0106 Oita Japan

Active substance	Pyriproxyfen
Name of manufacturer	Sumitomo Chemical Co. Ltd.
Address of manufacturer	27-1, Shinkawa 2-chome Chuo-ku 104-8260 Tokyo Japan
Location of manufacturing sites	Misawa Works, Aza-Sabishirotaira Oaza-Misawa, 033-0022 Misawa Aomori Japan

2.1.2 Product composition and formulation


NB: the full composition of the product according to Annex III Title 1 should be provided in the confidential annex.

Does the product have the same identity and composition as the product evaluated in connection with the approval for listing of the active substance(s) on the Union list of approved active substances under Regulation No. 528/2012?

Yes □ No ⊠

2.1.2.1 Identity of the active substance

Main constituent(s)		
ISO name Clothianidin		
IUPAC or EC name	(E)-1-(2-Chloro-1,3-thiazol-5-ylmethyl)-3-methyl-	
	2-nitroguanidine	
EC number	433-460-1	
CAS number	210880-92-5	
Index number in Annex VI of	613-307-00-5	
CLP		
Minimum purity / content	950 g/kg	

Main constituent(s)		
ISO name	Pyriproxyfen	
IUPAC or EC name	2-(1-methyl-2-(4-	
	phenoxyphenoxy)ethoxy)pyridine	
EC number	429-800-1	
CAS number	95737-68-1	
Index number in Annex VI of	613-303-00-3	
CLP		
Minimum purity / content	970 g/kg (sum of isomers; racemate)	
Structural formula	CH ₃ NOCO	

2.1.2.2 Candidate(s) for substitution

Clothianidin is considered a candidate for substitution as it fulfils two of the PBT criteria: - persistent and toxic.

The Assessment Report, however, states "even though the T-criterion as well as the P-, vP-criterion are fulfilled the active substance clothianidin is neither PBT- nor vP/vB- candidate as the B and vB-criteria are not fulfilled.

No specific test for potential endocrine disruption was carried out. However, from the available CMR studies and the repeated dose studies, there is no evidence for endocrine disruption or for CMR effects".

IUPAC name	Function	CAS number	EC number	Content (%)
3-[(2-chloro-1,3- thiazol-5- yl)methyl]-2- methyl-1- nitroguanidine	Active substance	210880-92- 5	433-460-1	0.526 (TGAI) Pure: 0.5%
2-(1-methyl-2- (4- phenoxyphenoxy) ethoxy)pyridine	Active substance	95737-68-1	429-800-1	0.515 (TGAI) Pure: 0.5%
Ethanoic acid	Non-active substance	64-19-7	200-580-7	0.3
potassium(E,E)- hexa-2,4- dienoate	Non-active substance	24634-61-5	246-376-1	0.5
	3-[(2-chloro-1,3- thiazol-5- yl)methyl]-2- methyl-1- nitroguanidine 2-(1-methyl-2- (4- phenoxyphenoxy) ethoxy)pyridine Ethanoic acid potassium(E,E)- hexa-2,4-	3-[(2-chloro-1,3- thiazol-5- yl)methyl]-2- methyl-1- nitroguanidineActive substance2-(1-methyl-2- (4- phenoxyphenoxy) ethoxy)pyridineActive substanceEthanoic acidNon-active substancepotassium(E,E)- hexa-2,4-Non-active substance	number3-[(2-chloro-1,3- thiazol-5- yl)methyl]-2- methyl-1- nitroguanidineActive substance210880-92- 52-(1-methyl-2- (4- phenoxyphenoxy) ethoxy)pyridineActive substance95737-68-1 64-19-7Ethanoic acid potassium (E,E)- hexa-2,4-Non-active substance64-19-7 24634-61-5	Image: Non-active hexa-2,4-Non-active substancenumber3-[(2-chloro-1,3-thiazol-5-yl)methyl]-2-methyl-1-nitroguanidineActive substance210880-92-5yl)methyl]-2-methyl-1-nitroguanidineSoftware substance95737-68-12-(1-methyl-2-(4-phenoxyphenoxy) ethoxy)pyridineActive substance95737-68-1Ethanoic acidNon-active substance64-19-7200-580-7Substance200-580-7

2.1.2.3 Qualitative and quantitative information on the composition of the biocidal product

2.1.2.4 Qualitative and quantitative information on the composition of the biocidal product family $^{\rm 2}$

Not applicable.

2.1.2.5 Information on technical equivalence

The active substance manufacturer for clothianidin is Sumitomo Chemical Company Ltd., Sumitomo Chemical Company LTD, Oita Works, 2200 Tsurusaki Oita City, 870-0106 Oita, Japan. This source is equivalent based on the equivalence assessment by ECHA (case BC-WD030793-37).

The active substance manufacturer for Pyriproxyfen is Sumitomo Chemical Company Ltd., Misawa Works, Aza-Sabishirotaira, Oaza-Misawa, Misawa, 033-0022 Aomori, Japan. This is the reference source for Pyriproxyfen.

2.1.2.6 Information on the substance(s) of concern

Acetic acid and potassium sorbate are considered substances of concern for human health and Environment. Please refer to 2.1.2.3 with regard to their content in the formulation. For other information, please refer to the confidential annex.

2.1.2.7 Information on endocrine disrupting properties

An assessment of the endocrine disruption is presented in section "Assessment of effects" for human health aspect and in section "Effects assessment on the environment" for the environmental aspect and/or the confidential annex.

For the active substances clothianidin and pyriproxyfen no ED assessment is required because for active substances which have been approved, the EU assessment should be

followed. The Assessment Reports for clothianidin (2014) and pyriproxyfen (2012) both state that these active substances would not be considered as having endocrine disrupting properties.

For two co-formulants an ED alert was identified. However, for both co-formulants CA NL concludes that we have to await the discussions at EU level. See the confidential annex for more specific information.

In conclusion, based on available information, it is not possible to conclude whether the non-active substance should be considered to have ED properties before the expiration of the legal deadline in the BPR and therefore the process will be concluded at the post-authorisation stage. Once the conclusion regarding ED properties of these co-formulants is available, the applicant must inform the eCA. If needed, the conditions of authorization shall be revised.

2.1.2.8 Type of formulation

RB Bait (ready for use)

2.1.3 Hazard and precautionary statements

Classification and labelling of the products of the product according to the Regulation (EC) 1272/2008

Classification			
Hazard category	Skin Sens. 1		
	Aquatic Chronic 1		
Hazard statement	H317: May cause an allergic s	skin reaction.	
	H410: Very toxic to aquatic li	fe with long lasting effects.	
	· · · · ·		
Labelling			
Hazard Pictogram			
	GHS07: exclamation mark	GHS09: environment	
Signal words	Warning		
Hazard statements H317: May cause an allergic skin reaction.		skin reaction.	
	H410: Very toxic to aquatic li	fe with long lasting effects.	
Precautionary	P273: Avoid release to the er	ivironment.	
statements	P280: Wear protective gloves	5.	
	P302+P352: IF ON SKIN: Wa	sh with plenty of water/	
	P333+P313: If skin irritation	or rash occurs: Get medical	
advice/attention.			
	P391; Collect spillage.		
	P501: Dispose of contents/container to		

NI-L-	
Note	UFI: G690-10HC-H00S-64C4
	In line with CA document CA-May15-Doc.4.4 all P- statements that are triggered by CLP need to be included. However, if P-statements are triggered, but considered not applicable for the product than they can be omitted.
	 The following P-statements are omitted: P261, as the product is a gel and the actives or co- formulants are not volatile. P272 and P362+P364 as the gel is applied by syringe, no contamination of work clothing is anticipated P321 is also triggered by H317. However, it is indicated that his is highly recommended only in exceptional cases where specific treatment is known and required. This is not applicable for Pesguard Gel.

2.1.4 Authorised use(s)

2.1.4.1 Use description

Table 1. Use # 1 - Professional Use - RTU Bait

Product Type	Product type 18: Insecticides, acaricides and products to control other arthropods
Where relevant, an exact description of the authorised use	Insecticide
Target organism (including development stage)	Blattella germanica – German cockroach – nymphs and adults Supella longipalpa – Brown banded cockroach - nymphs and adults Blatta orientalis – Oriental cockroach – nymphs and adults Periplaneta americana – American cockroach - nymphs and adults
Field of use	Indoor In cracks and crevices, or in concealed locations inaccessible to humans or domestic animals: behind refrigerators, cupboards and shelves, under kitchen appliances, in electrical control boxes, voids and ducting and under bathroom fixtures etc.
Application method(s)	Bait application (RTU)

Application rate(s) and frequency	approximately 4 approximately 0 where larger coo <i>P. americana</i>), i or where alterna eliminated the h spot per m2 in c The maximum n	approximately 4 mm diameter (each spot comprising approximately 0.032g of bait). In cases of heavy infestation, where larger cockroach species are present (<i>B. orientalis</i> or <i>P. americana</i>), in areas that are particularly dirty or cluttered or where alternative sources of food cannot be entirely eliminated the higher application rate (e.g. 2 instead of 1 spot per m2 in case of a light infestation) should be used. The maximum number of annual applications is 11.					
	Infestation level	Recommended application rate (number of 4mm diameter spots (approximately 0.032g of bait) per m²)					
	Light Medium Heavy	Medium 3 – 6					
Category(ies) of users	Professional						
Pack sizes and packaging material	30g PP syringe HDPE Screw top cap						

2.1.4.2 Use-specific instructions for use

See the general directions for use

2.1.4.3 Use-specific risk mitigation measures

See the general directions for use

2.1.4.4 Where specific to the use, the particulars of likely direct or indirect effects, first aid instructions and emergency measures to protect the environment

See the general directions for use

2.1.4.5 Where specific to the use, the instructions for safe disposal of the product and its packaging

See the general directions for use

2.1.4.6 Where specific to the use, the conditions of storage and shelf-life of the product under normal conditions of storage

See the general directions for use

2.1.5 General directions for use

2.1.5.1 Instructions for use

Always read the label or leaflet before use and respect all the instructions provided.

Do not expose bait drops to sunlight or heat (i.e radiator).

The pre-filled plastic reservoir containing *Pesguard*[®] Gel is intended for use with the plunger provided or a specific bait application device common to the pest control industry. Refer to the manufacturer's instructions for directions on the use of the applicator.

Inject the bait into cracks and crevices, void spaces, or in concealed locations inaccessible to humans or domestic animals where insects may live, feed and breed. Such areas are generally warm/damp and dark (behind refrigerators cupboards and shelves, under kitchen appliances, in electrical control boxes, voids and ducting and under bathroom fixtures etc). Inspection or trapping to confirm infestation is recommended prior to treatment. Ensure that any alternative food sources are removed and concentrate the bait placements as individual spots at cockroach activity sites. The product should only be applied to areas inaccessible to children and pets.

Do not apply *Pesguard*[®] Gel where it will come into contact with water or in areas that are routinely cleaned. Typically, cockroaches will die a few hours after a single feed on *Pesguard*[®] Gel. In infested premises, dead cockroaches will normally be seen within 24 hours of treatment.

Remove the cap from the nozzle, touch the top to the surface to be treated, and push down on the plunger. Replace the cap on the dispenser after treatment is completed.

The bait will adhere to non-greasy or non-dusty surfaces and will remain pliable and palatable to cockroaches as long as it is visibly present.

Treated areas should be visually inspected after 1-2 weeks. Where initial infestation was heavy a second *Pesguard*[®] Gel application may be required if the first treatment has been consumed and live cockroaches are still present.

A second visual inspection of bait placements is recommended 2-4 weeks after the initial treatment. Reapply when bait is no longer visibly present, according to the level of infestation (light, medium or heavy). Replace bait before it is completely consumed to keep cockroaches from returning.

Inform the registration holder if the treatment is ineffective.

Spills and residues containing the product need to be removed as chemical waste.

Care should be taken to avoid depositing gel onto exposed surfaces. If gel contacts an exposed surface, remove gel with a paper towel and clean the area with disposable wet wipes.

During follow-up visits, inspect bait placements and re-apply when necessary.

Do not place bait in locations that are routinely washed, as bait will be removed by washing. Do not use this product in or on electrical equipment where a possibility of shock hazard exists. Avoid contact with textiles and clothing, as bait may stain.

2.1.5.2 Risk mitigation measures

Wear protective chemical resistant gloves during product handling phase (glove material

to be specified by the authorisation holder within the product information).

Do not apply bait in areas where repellent insecticides have been used without thoroughly cleaning the surface with disposable wet wipes. Do not apply repellent insecticides after application of the bait.

Do not apply directly on or near food, feed or drinks, or on surfaces or utensils likely to be in direct contact with food, feed, drinks and animals.

Avoid placing gel on fabrics or carpets since it may stain some absorbent materials. To prevent staining, exposed bait should be cleaned up immediately with disposable wet wipes.

Cleaning materials must be disposed of to solid waste.

2.1.5.3 Particulars of likely direct or indirect effects, first aid instructions and emergency measures to protect the environment

Likely direct or indirect effects

No adverse effects expected when used as directed.

Description of first aid measures

Skin contact: Remove contaminated clothing immediately and wash skin with soap and water. Get medical attention if irritation persists after washing.

Eye contact: If symptoms occur; rinse with water. Remove contact lenses, if present and easy to do. Call a POISON CENTRE or a doctor.

Ingestion: If swallowed: If symptoms occur call a POISON CENTRE or a doctor.

If inhaled: not applicable.

Most important symptoms and effects, both acute and delayed

Eyes: May cause temporary eye irritation.

Emergency measures to protect the environment

Avoid release of the product to the environment.

2.1.5.4 Instructions for safe disposal of the product and its packaging

Only pass on empty containers/packaging for recycling. Disposal of this packaging should at all times comply with the waste disposal legislation and any regional local authority requirements.

2.1.5.5 Conditions of storage and shelf-life of the product under normal conditions of storage

Protect from frost. Store away from direct sunlight. Shelf life: 2 years.

2.1.6 Other information

-

2.1.7 Packaging of the biocidal product

Type of packaging	Size/volume of the packaging	Material of the packaging	Type and material of closure(s)	Intended user (e.g. professional, non- professional)	Compatibility of the product with the proposed packaging materials (Yes/No)
Syringe	30g	Polypropylene	Screw top cap (HDPE with a UV blocker additive)	Professional	Yes

2.1.8 Documentation

2.1.8.1 Data submitted in relation to product application

<u>Product</u>

Please refer to the reference list contained in Annex 3.1.

Active Substance

A new study (**1990**) has been conducted to determine the biodegradability of [¹⁴C]-Pyriproxyfen in activated sludge based on OECD Method 314B and is contained within both the product dossier and the active substance dossier for Pyriproxyfen.

2.1.8.2 Access to documentation

The applicant is the data holder of the product and active data. A letter of Access is therefore not required.

2.1.8.3 Similar conditions of use

The pre-submission concluded that the product will have similar conditions of use across the Union, in accordance with Article 43(1).

2.2 Assessment of the biocidal product

Pesguard[®] Gel was originally referred to by the experimental formulation known as . This was later changed to a "registration code number"

2.2.1 Intended use(s) as applied for by the applicant

Please refer to 2.1.4.1

2.2.2 Physical, chemical and technical properties

Some studies within this section are performed with **expression**, which is a development code for *Pesguard*[®] Gel. The composition of the formulations is identical.

Property		Purity of the test substance (% (w/w)	Results	Reference
Physical state at 20 °C and 101.3 kPa	EPA OPPTS 830.6303 (Physical State)	revision 0 Purity: 0.504% clothianidin; 0.487% pyriproxyfen	Solid	

eCA remark

The applicant indicated the product is a gelatinous solid, which is a more accurate description than what was reported in the study **second second se**

Formally, the GLP claim of this report cannot be accepted as the test item identification is incomplete. A batch number is missing. Although the report states that lot # GLP2953 was used, this is the lab's internal designation for the test item and not that of the manufacturer. As GLP is not a requirement, the eCA considers that the study can be accepted as the study clearly indicated what product was tested and the active substance contents is within the specified range.

Colour at 20 °C and 101.3 kPa	EPA OPPTS 830.6302 (Color)	revision 0 Purity: 0.504% clothianidin; 0.487% pyriproxyfen	Tan	
Odour at 20 °C and 101.3 kPa	EPA OPPTS 830.6304 (Odor)	revision 0 Purity: 0.504% clothianidin; 0.487% pyriproxyfen	Chicken meal, dog food odour	
Acidity / alkalinity	EPA OPPTS 830.7000 (pH)	revision 0 Purity: 0.504%	The product pH is 4.88 at 5% in water	

Property	Guideline and Method	Purity of the test substance (% (w/w)	Results	Reference
		clothianidin; 0.487% pyriproxyfen		
required according to the BPR gui Normally, a 1% dispersion should Relative density / bulk density eCA remark The method used is based on add	idance. The applicant has be tested – the test at 5 EPA OPPTS 830.7300 (Density / Relative Density / Bulk Density)	not diluted in water dur provided data on a 5% o is therefore expected revision 0 Purity: 0.504% clothianidin; 0.487% pyriproxyfen	ing use. A determination of the pH is dispersion, which can be considered to result in a (slightly) lower pH. The product specific gravity at 16.5°C is 1.062 g/cm ³	as supplementary
pour density is not considered ne <u>The method used is equivalent to</u> Storage stability test – accelerated storage	cessary.	Cockroach bait – (Lot no.DAT-041415A) 0.5% clothianidin 0.5% pyriproxyfen	The bait was found to be stable after storage at 54°C for 2 weeks in its original packaging (PP syringes). The active ingredient content was quantified using validated analytical method ref. with slight modifications. The concentration of both clothianidin and pyriproxyfen remained constant with 1.61% and -0.39% change,	

Property	Guideline and Method	Purity of the test substance (% (w/w)	Results	Reference
	Guideline No. 830-63 17. 830-6320	revision 0 Purity: 0.504% clothianidin; 0.492% pyriproxyfen	The mean weight change after storage was -0.2%. The product packaging (PP syringe) remained unchanged. The colour of the bait changed slightly but in subsequent efficacy tests using aged bait the bait was found to perform satisfactorily (). Based upon the results of this study the bait can be expected to be stable for 2 years. The bait was found to be stable after storage at 54°C for 2 weeks in glass and in commercial PP syringe (see section 2.1.7 for details). The active ingredient content was quantified using validated analytical method ref. respectively. Clothianidin Initial 0.504% 2w 0.492% (-2.4%) in glass	

Property	Guideline and Method	Purity of the test substance (% (w/w)	Results	Reference
			 2w 0.501% (-0.6%) in syringe Pyriproxyfen Initial 0.489% 2w 0.479% (-2.0%) in glass 2w 0.468% (-4.3%) in syringe The material stored at 54°C became darker in colour. Appearance: Initial: Tan gelatinous solid 2w: Tan gelatinous solid with slight discoloration and darkening in sample material, stored in glass. 2w: Tan gelatinous solid, stored in syringe Evaluation of the containers showed no signs of corrosion. 	

eCA remark

The appearance changes during storage at elevated temperatures. Considering the product is a bait, this may affect the palatability of the formulation. The applicant has therefore provided efficacy data (**Sector 2007**, evaluated in the efficacy section 2.2.5.5), which shows the product is still efficacious despite the colour change compared to a fresh sample. Therefore, the eCA does not consider limitations of the storage conditions necessary.

In stability studies, the pH is normally reported, but for this non-flowing product, not diluted during use, pH data is not strictly required. It was therefore not included in the stability studies. See also the eCA remark under the entry acidity/alkalinity.

The analytical method used in the study **example** is a modified version of the method reported in the analytical method section (**Control**). The method was modified as the lab did not have identical equipment available. Modifications were reported in detail: a 150mm column was used instead of a 100mm column (both C18), flow rate was lowered from 2 to 1.5mL/min, a lower amount of

PT18

Property	Guideline and Method	Purity of the test substance (% (w/w)	Results	Reference
on the selectivity of the method a times shifts which may reduce se	and judging the chromato paration or cause interfer 70mL acetone to 10g sar study. Considering the re	grams of the validation s rences. However, as the nple to 0.1g IS in 50mL a	e modifications are not expected to h study, there are no substances that n ratio between sample and the interna acetone), the linearity should have b he study constant to the study , this is cor Evaluation of the active ingredient	hay have retention al standard was een reported, isidered an
term storage at ambient temperature	17. 830-6320	revision 0 Purity: 0.496% clothianidin; 0.504% pyriproxyfen	content of Revision 0 throughout the study shows no signs of degradation at room temperature (the % difference for clothianidin stored in both glass and plastic (PP) syringes was -2.4% and -4.8% after 24 months, and for pyriproxyfen it was -0.4% and - 4.6%, respectively). No changes in the appearance of the material were observed. Evaluation of the containers showed no signs of corrosion. The room temperature samples were analysed after 3, 6, 12, and 24 months of storage. At each inspection interval the containers were inspected for any signs of corrosion and weight loss. A physical observation of the test substance in the clear glass containers was made. The room temperature was an average of	

Property	Property		erty Guideline and Method Purity of the test substance (% (w/w)		Results	Reference
					21.4°C. Humidity was not recorded because the test substance was not being stored in permeable containers. The analytical method used was validated under GLP-2953.	
eCA remark More detailed		on the active su	ubstance conte	nt was available:		
t	Clothianidin	Change	Pyriproxyfen	Change		
0	0.496	n/a	0.504	n/a		
3m, glass	0.486	-2.02	0.518	2.78		
3m, PP	0.483	-2.62	0.509	0.99		
6m, glass	0.500	0.81	0.501	-0.60		
6m, PP	0.486	-2.02	0.489	-2.98		
12m, glass	0.522	5.24	0.520	3.17		
12m, PP	0.487	-1.81	0.475	-5.75		
24m, glass	0.484	-2.42	0.502	-0.40		
24m, PP	0.472	-4.84	0.481	-4.56		

The applicant has indicated the influence of humidity was not tested. Considering the product is gelatinous with a significant water content, the influence of humidity is expected to be negligible.

In stability studies, the pH is normally reported, but for this non-flowing product, not diluted during use, pH data is not strictly required. It was therefore not included in the stability studies. See also the eCA remark under the entry acidity/alkalinity.

Pesquard[®] Gel has a shelf-life of 2 years in PP syringes, the proposed commercial packaging. Palatability data with fresh and aged samples is evaluated in the efficacy section. Both aged samples after accelerated (2 weeks at 54°C) and real-time storage (2 years) were tested.

Property	Guideline and Method	Purity of the test substance (% (w/w)	Results	Reference
				•
Storage stability test – low temperature stability test for liquids	-	-	The label states, "Protect from frost", therefore, no further testing is required.	-
Effects on content of the active substance and technical characteristics of the biocidal product - light	Guideline No. 830-63 17. 830-6320	revision 0 Purity: 0.496% clothianidin; 0.504% pyriproxyfen	The product was found to be stable for 2 years when stored in both glass jars and plastic (PP) 30cc syringes.	
			The packaging is semi-transparent and stored under ambient light, which is not representative for direct sunlight. Therefore, the storage conditions include the condition that the product is to be stored away from direct sunlight.	
Effects on content of the active substance and technical characteristics of the biocidal product – temperature and humidity	Guideline No. 830-63 17. 830-6320	revision 0 Purity: 0.496% clothianidin; 0.504% pyriproxyfen	Evaluation of the active ingredient content of Revision 0 throughout the study shows no signs of degradation at room temperature. The room temperature was an average of 21.4°C.	
eCA remark			Humidity was not recorded because the test substance was not being stored in permeable containers.	

eCA remark

The applicant has indicated the influence of humidity was not tested. Considering the product is gelatinous with a significant water content, the influence of humidity is expected to be negligible.

Property	Guideline and Method	Purity of the test substance (% (w/w)	Results	Reference
The active substance was proven	to be stable at accelerate	ed conditions (2 weeks a	t 54°C).	
Effects on content of the active substance and technical characteristics of the biocidal product - reactivity towards container material	Guideline No. 830-63 17. 830-6320	revision 0 Purity: 0.496% clothianidin; 0.504% pyriproxyfen	Evaluation of the active ingredient content of Revision 0 throughout the study shows no signs of degradation at room temperature. No changes in the appearance of the material were observed. Evaluation of the PP containers showed no signs of corrosion.	
Wettability	-	-	Not relevant. The product is a gelatinous solid and will not be mixed with water.	-
Suspensibility, spontaneity and dispersion stability	-	-	Not relevant. The product is a gelatinous solid and will not be mixed with water before use. This endpoint only needs to be addressed for products that form suspensions upon use.	-
Wet sieve analysis and dry sieve test	-	-	Not relevant. The product is a gelatinous solid. This data requirement is only valid for wettable powders, suspension concentrates, water dispersible granules, aqueous capsule suspensions, dispersible concentrates, suspo-emulsions, water soluble granules and water- soluble powders.	-
Emulsifiability, re-emulsifiability and emulsion stability	-	-	Not relevant. The product is a gelatinous solid. This data	-

Property	Guideline and Method	Purity of the test substance (% (w/w)	Results	Reference	
			requirement is only valid for emulsifiable products.		
Disintegration time	-	-	Not relevant. The product is a gelatinous solid. This data requirement is only relevant to water dispersible solids.	-	
Particle size distribution, content of dust/fines, attrition, friability	/fines, attrition, friability gelatinous solid. This data requirement is only valid for powders and granules. ent foaming - Not relevant. The product is a				
Persistent foaming	-	-	Not relevant. The product is a gelatinous solid. This data requirement is only valid for products that are applied in water.	-	
Flowability/Pourability/Dustability	-	-	Not relevant. The product is a gelatinous solid. Flowability and Dustability are only valid for granular materials. Pourability is only valid for suspension concentrates, capsule suspensions or suspo-emulsions.	-	
Burning rate — smoke generators	-	-	Not relevant. The product is a gelatinous solid. The product will not generate smoke.	-	
Burning completeness — smoke generators	-	-	Not relevant. The product is a gelatinous solid. The product will not generate smoke.	-	
Composition of smoke — smoke generators	-	-	Not relevant. The product is a gelatinous solid. The product will not generate smoke.	-	
Spraying pattern — aerosols	-	-	Not relevant. The product is a	-	

Property	Guideline and Method	Purity of the test substance (% (w/w)	Results	Reference
			gelatinous solid. The product is not an aerosol.	
Physical compatibility	-	-	Not relevant. The product is not intended to be used in conjunction with any other biocidal products.	-
Chemical compatibility	-	-	Not relevant. The product is not intended to be used in conjunction with any other biocidal products.	-
Degree of dissolution and dilution stability	-	-	Not applicable. The product is not diluted before use.	-
Surface tension	-	-	Not relevant. The product is a gelatinous solid.	-
Viscosity	-	-	Not relevant. The product is a gelatinous solid.	-

Conclusion on the physical, chemical and technical properties of the product

The physical chemistry data confirm that the product is a gelatinous solid which is tan in colour with a chicken meal, dog food odour. The product has a pH of 4.88 at 5% in water and a specific gravity of 1.062 g/cm³ at 16.5°C. The bait was shown to be stable following storage at ambient temperature for 2 years in PP. Packaging material is semi-transparent and should therefore be protected from direct sunlight.

The product is not heat sensitive (stable for 2 weeks at 54°C), but low temperature stability was not investigated. Therefore, storage conditions should indicate the product should be protected from frost.

Storage conditions: Protect from frost. The product is to be stored away from direct sunlight. Shelf-life 2 years.

PT18

2.2.3 Physical hazards and respective characteristics

For purposes of classification and labelling, the product is assessed as a solid. Although the product contains water, it does not flow, even when heated to 50°C.

Property	Guideline and Method	Purity of the test substance (% (w/w)	Results	Reference
Explosives	EPA OPPTS 830.6316 (Explodability)	revision 0 Purity: 0.504% clothianidin; 0.487% pyriproxyfen	Non-explosive	
			In addition, based on a review of the product co-formulants, as none of them are classified as explosive, the product does not require to be classified as an explosive according to Regulation (EC) 1272/2008.	

eCA remark

The study does not contain information on what basis the product is not considered explosive. Test method EPA OPPTS 830.6316 is not described within the test report. Therefore, the study is not acceptable.

The product does not contain any potentially explosive compounds: none of the co-formulants or the active substances are classified and based on the information available, the functional groups relating to explosive properties, as defined in appendix 6 of the UN manual of tests and criteria, do not seem to be present in the formulation, with one exception: clothianidin. As this substance was considered not explosive as part of the substance evaluation, it is not expected that clothianidin does not need to be considered further for assessment of the explosive properties of the product.

Based on the above, the eCA considers that the product does not need to be classified as an explosive in the sense of Regulation (EC) 1272/2008.

Flammable gases	-	-	Not applicable to a solid product.	-
Flammable aerosols	-	-	Not applicable to a solid product.	-

Property	Guideline and Method	Purity of the test substance (% (w/w)	Results	Reference
Oxidising gases	-	-	Not applicable to a solid product.	-
Gases under pressure	-	-	Not applicable to a solid product.	-
Flammable liquids	-	-	Not applicable to a solid product.	-
Flammable solids	EPA OPPTS 830.6315 (Flammability)	revision 0 Purity: 0.504% clothianidin; 0.487% pyriproxyfen	Non-flammable	
eCA remark The study was performed in a co	omparable way to EC A10 a	and the UN test method.	Therefore, the study is considered a	cceptable. It
allows the conclusion the formul As it is possible to debate wheth be expected based on the comp	ation does not need to be her a gel may be a liquid insosition of the product. Alth	classified as a flammable stead, the eCA considers lough the product contain		/ study is as may
the product is not expected to h	ave a flashpoint below its l	boiling point.		_
Self-reactive substances and mixtures	-	-	None of the components of the product are classified as self- reacting substances. Experience in the use of the product does not indicate that the product will self- react.	-
Pyrophoric liquids	-	-	Not applicable to a gelatinous solid product.	-
Pyrophoric solids	-	-	None of the components of the product are classified as pyrophoric. Experience in the use of the product does not indicate that the product will be pyrophoric.	-
Self-heating substances and mixtures	-	-	For purposes of classification and labelling, the product is considered to be a solid as it is a gelatinous	-

Property	Guideline and Method	Purity of the test substance (% (w/w)	Results	Reference
			solid which does not flow, even when heated to 50°C. Classification as a self-heating substance should be considered. The gelatinous mass does not have a large surface and is therefore not expected to be liable to self-heating. Considering its unique physical state, low surface area and composition, the product does not need to be classified as	
Substances and mixtures which in contact with water emit flammable gases	-	-	self-heating. None of the components of the product are known to emit flammable gases when in contact with water. Experience in the use of the product does not indicate that the product will emit flammable gas when in contact with water. The product itself also contains water.	-
Oxidising liquids	-	-	Not applicable to a gelatinous solid product.	-
Oxidising solids	EPA OPPTS 830.6314 (Oxidising or Reducing Action)	revision 0 Purity: 0.504% clothianidin; 0.487% pyriproxyfen	No oxidising properties	
			In addition, based on a review of the product co-formulants, as none of them are classified as potentially oxidising compounds,	

Property	Guideline and Method Purity of the test substance (% (w)		Results	Reference
			the product does not required to be classified as oxidising according to Regulation (EC) 1272/2008.	
eCA remark The study does not contain infor	mation on what basis the	product is not considered	oxidising. Test method EPA OPPTS 8	30.6314 is not
described within the test report.		•		
classified and based on the infor	mation available, the func do not seem to be present	tional groups relating to c t in the formulation. The e	of the co-formulants or the active sub oxidising properties, as defined in app eCA considers that the product does	endix 6 of the
Organic peroxides	-	-	Following a review of the components of the product it can be concluded that the product does not contain any organic peroxides.	-
Corrosive to metals	-	-	The product is considered a solid for the purposes of classification and labelling, for which no appropriate test method is available. The product is a gelatinous gel which does not flow, even when heated to approximately 50°C. It is therefore not possible to test the product using the existing UN test method as this method is intended for liquids. The eCA therefore accepts that a study is not required.	-
Auto-ignition temperatures of products (liquids and gases)	-	-	Not applicable to a solid product.	-
Relative self-ignition	-	-	The recommended test method for	-

Property	Guideline and Method	Purity of the test substance (% (w/w)	Results	Reference
temperature for solids			determining relative self-ignition temperature according to Guidance on the BPR: Volume I Parts A+B+C, Version 2.0 May	
			2018, is UN Test N.4, as described in Section 33.3.1.6 of the UN-MTC. Section 33.3.1.6.3 makes clear that this procedure is applicable only to powders and granules. Therefore, no suitable method is available for determining the relative self-ignition temperature of a gelatinous solid and the study can be waived on the grounds that	
considering the composition of th	he product, the major com	ponents are not expected	it is not technically feasible. n is available on the individual const d to have an auto-ignition temperatu nificant amount of foodstuffs, which	re of potential
Dust explosion hazard	-	-	Not applicable to a gelatinous solid product.	-

Conclusion on the physical hazards and respective characteristics of the product

Following a review of the components of the product it can be concluded that the product is not explosive, flammable or oxidising.

The product does not require classification under Regulation (EC) No 1272/2008 for physical hazards.

PT18

2.2.4 Methods for detection and identification

Analyte (type	Analytical	Fortification	-	Specificity	Recove	r y rate (%)	Limit of quantification (LOQ) or other limits	Reference
of analyte e.g. active substance)	method	range / Number of measurements			Range	Mean	RSD		
Clothianidin	HPLC-UV	0.5% 5 replicates	0.0050-1.00 mg/ml; r ² = 0.9998938; 8 points	No interference	98.2 – 100.2 ^A	99.0%	0.78, ^A	N/A	
Pyriproxyfen	HPLC-UV	0.5% 5 replicates	0.0050-1.25 mg/ml; r ² = 0.9999835; 8 points	No interference	96.5 - 98.1 ^A	97.5%, ^A	0.69, ^A	N/A	

The substances of concern present in the formulation cannot be formed during storage. Therefore, no analytical methods are required.

^A Calculated by the eCA

eCA remark

The analytical method provided is based on reversed phase HPLC-UV with internal standardisation (dibutyl phthalate), equipped with a C-18 column and detection at 290nm. The mobile phases are acetonitrile and water, used in a gradient. Sample preparation involves dissolving in acetone, centrifugation, sonication and filtration prior to analysis.

As the accuracy was determined based on 5 replicates, it is possible to calculate a %RSD from the recovery experiments, which is then used to evaluate system precision. The %RSD (~0.8%) determined this way meets the Horwitz criterion (maximum %RSD at 1% target analyte is 2.68% according to SANCO/3030/99 revision 4). It is noted by the eCA that the range nor individual recoveries were reported. Therefore, the eCA has recalculated the individual recoveries and %RSD from the raw data included in the report.

Specificity was addressed using the appropriate chromatograms. Linearity graphs were forced through zero, which is formally not allowed. However, judging the plots, the effect is expected to be minor and therefore accepted as a minor deficiency by the eCA (slope for clothianidin: y = 7871610x; slope pyriproxyfen: y = 3342658x).

The method is considered adequately validated to determine the active substance content in the formulation *Pesquard*[®] Gel.

Conclusion on the methods for detection and identification of the product

A method of analysis employing HPLC-UV is provided for the determination of the active substances, clothianidin and pyriproxyfen, in the product. The method is fully validated in accordance with SANCO/3030/99 rev. 4 11/07/00.

Methods of analysis for the determination of clothianidin in soil, water, air and food/feed of plant origin have previously been evaluated at EU level and accepted for inclusion to Annex I of Directive 98/8/EC. Methods for monitoring residues in body fluids and tissues, and food/feed of animal origin are not necessary, as the intended uses will not result in significant residues when the label instructions are followed (store away fromfood, beverages and pet food).

Methods of analysis for the determination of pyriproxyfen residues in soil, water and air have previously been evaluated at EU level and accepted for inclusion to Annex I of Directive 98/8/EC. Methods for monitoring residues in body fluids and tissues, and food/feed of plant and animal origin are not necessary, as the intended uses will not result in significant residues when the label instructions are followed (store away from food, beverages and pet food).

2.2.5 Efficacy against target organisms

2.2.5.1 Function and field of use

The product *Pesguard*[®] Gel is an insecticide (PT18) containing 0.5% clothianidin (neonicotinoid) and 0.5% pyriproxyfen (insect growth regulator) for use by professionals against cockroaches.

2.2.5.2 Organisms to be controlled and products, organisms or objects to be protected

Organisms to be controlled: For the control of German cockroaches (*Blattella germanica*), Brown banded cockroaches (*Supella longipalpa*), Oriental cockroaches (*Blatta orientalis*) and American Cockroaches (*Periplaneta americana*) both as nymphs and adults.

Products/Organisms to be protected: General hygiene.

2.2.5.3 Effects on target organisms, including unacceptable suffering

Ingestion of *Pesguard*[®] Gel results in knockdown and mortality.

2.2.5.4 Mode of action, including time delay

Clothianidin belongs to the chemical class of insecticides known as neonicotinoids or chloronicotinyls, which interfere with the nicotinic acetylcholine receptors at the post-synaptic membrane. The compound acts agonistically on insect nicotinic acetylcholine receptors located in the central nervous system. Clothianidin has an insecticidal effect by contact and ingestion (systemic insecticide).

Pyriproxyfen is an insect growth regulator and acts as a juvenile hormone analogue (or mimic), interrupting the insect morphogenesis. It prevents (depending upon the time of application) egg hatching, metamorphosis of larvae into pupae, and pupae into adults.

The time delay for efficacy to begin depends on the developmental stage of the cockroaches at the time of application. Initial activity normally takes approximately 24 hours, as clothianidin is a slow acting contact and ingestion active substance, and the visual effects of pyriproxyfen only become apparent when a growth-stage change occurs in a treated insect (or failure to change, leading to death).

2.2.5.5 Efficacy data

	-	Experime	ntal data on the efficacy of the	biocidal	product a	igainst target	organism(s)	-
unction and Field of use envisaged	Test substance	Test organism(s)	Test method, Test system / concentrations applied / exposure time			Test results: e	ffects		Reference
PT18 Pesguard [®] Professional	(identical to <i>Pes quard</i> ®	American Cockroach (Periplaneta	, i	americana) es	<pre></pre>		nents (average± s	roaches (<i>Periplaneta</i> standard error, n = 5).	
Cockroach Gel	Professional	americana),	1) cockroach gel bait (0.50%	Day		(0.5% clothi	anidin + 0.5% pyr	riproxyfen)	
Bait	Cockroach Gel	Brown-Banded	cĺothianidin + 0.50% pyriproxyfen)	Day	Alive	Knockdown	Moribund	Dead	
	Bait)	cockroach (Supella		1	40.0±8.2	9.0±2.9	44.0±5.1	7.0 ± 5.8	
	containing (Supera 0.5% w/w clothianidin + 0.5% w/w pyriproxyfen (Supera longipalpa). Laboratory cultured adult males			2	20.0±5.5	11.0±2.9	41.0±5.6	28.0±5.6	
			3	14.0±4.3	6.0±2.9	23.0±4.4	57.0 ± 5.1		
		- Test method: arena choice-test bioassay	4	8.0±3.4	9.0±2.4	11.0±2.4	72.0 ± 3.4		
			(alternative food: rat chow)	5	5.0±1.6	5.0±2.2	10.0±2.2	80.0±5.2	
	pyriproxyten		 20 cockroaches per replicate. 5 replicates pertreatment per species 	6	4.0±2.9	4.0±1.9	9.0±2.9	83.0±6.4	
			- 5 replicates pertreatment per species	7	3.0±2.0	3.0±2.0	6.0±1.9	88.0 ± 5.6	
				8	1.0 ± 1.0	4.0±4.0	4.0±1.9	91.0 ± 4.8	
			A rena surface: (58.4 x 40.6 x 22.9 c m =2 3 74.2 c m ² = 0.23 m ² floor a rea)	Untreated					
				Day	Alive	Knockdown	Moribund	Dead	
			Dosage: 0.3 ± 0.03 g	1	100.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	
		This application amount was selected (high label rate) to ensure that a sufficient amount	2	100.0±0.0	0.0±0.0	0.0 ± 0.0	0.0 ± 0.0		
			3	99.0±1.0	0.0±0.0	0.0 ± 0.0	1.0 ± 1.0		
			of bait was available at the start of the study	4	97.0±2.0	2.0±2.0	0.0 ± 0.0	1.0 ± 1.0	
			to meet the consumption needs of all the	5	96.0±2.0	1.0 ± 1.0	0.0 ± 0.0	3.0±1.2	
			cockroaches. Preliminary work indicated that	6	93.0±1.2	3.0±1.2	1.0 ± 1.0	3.0±1.2	
			provisioning a lower amount of bait would result in insufficient food acquisition by the	7	94.0±1.0	2.0±1.2	0.0 ± 0.0	4.0±1.0	
			cockroaches, leading to uncontrolled	8	95.0±1.6	0.0±0.0	1.0 ± 1.0	4.0 ± 1.0	
			experimental variation due to food availability,	9	95.0±1.6	0.0±0.0	0.0 ± 0.0	5.0 ± 1.6	
			competition and cannibalism.	10	95.0±1.6	0.0±0.0	0.0±0.0	5.0 ± 1.6	
				11	95.0±1.6	0.0±0.0	0.0 ± 0.0	5.0±1.6	
				12	95.0±1.6	0.0 ± 0.0	0.0 ± 0.0	5.0 ± 1.6	
			Environmental conditions P . americana : 21-24 °C , 64-78% RH	Efficacy of Americancoc		is demonstrated with	91% mortality wi	thin eight days in	
			Environmental conditions S.longipalpa: 22-25 °C, 51-60% RH	Table 2: Efficacy of cockroach baits against brown banded cockroaches ($Supella$ $longipalpa$) exposed to three different bait treatments (average± standard error, n = 5). V alues in bold indicate where mortality exceeded 90%.					
				Day		(0.5% clothiar	nidin + 0.5% pyri	proxyfen)	
					Alive	Knocked-down	Moribund	Dead	
				1	7.0±2.5	1.0 ± 1.0	0.0 ± 0.0	92.0±3.0	1

		Experime	ntal data on the efficacy of the	biocidal p	roduct a	agains	t targe	t organis	sm(s)		
Function and Field of use envisaged	Test substance	Test organism(s)	Test method, Test system / concentrations applied / exposure time			Test	t results: e	effects			Reference
chrisagea				3	3.0±2.0	0.0	±0.0	1.0 ± 1.0	96.0	-2.9	
				4	2.0 ± 1.2		±0.0	0.0 ± 0.0		-	
				5	0.0 ± 0.0		±0.0	0.0±0.0			
				6	0.0±0.0		±0.0	0.0±0.0			
				7	0.0 ± 0.0	0.0	±0.0	0.0 ± 0.0	100.0	±0.0	
				Figures in italio	s have been	added, as	they were	eomitted fror	n the origina	report.	
				Day				ly rat chow			
				-	Alive		ed-down	Moribune			
				1	99.0±1.0		±0.0	0.0±0.0			
				2	97.0±2.0 94.0±1.9		±1.0 ±0.0	0.0±0.0 0.0±0.0			
				4	94.0±1.9 92.0±2.0		± 0.0 ± 0.0	0.0 ± 0.0 0.0±0.0			
				5	92.0±2.0 92.0±2.0		± 0.0 ± 0.0	0.0 ± 0.0 0.0±0.0			
				6	91.0±1.9		±0.0	0.0±0.0			
				7	91.0±1.9		±0.0	0.0±0.0		-	
				Efficacy of banded cockro		as demons	strated with	n 92% morta	lity within on	e day in Brow	n
	0.5% w/w	German	Laboratory trial/screeningstudy	Table 1. Morp	hological an	develop	mental stag	ge distri buti o	n of cockroad	hes alive at tl	ne
O U812 gel	1812 gel pyriproxyfen cockroach			98-day termination of the study.							
bait matrix	(identical to	(Blattella	Test design:				2 (/	ofindividuals			
incorporating	the pyriproxyfen	germanica)	a) 25 cockroaches, 4 - week old immature male and 25 4 - week old immature female	Treatment	Normal	Normal	Normal	A bnormal	A bnormal	Abnormal	
0.5%	contentin		cockroaches representing the approximate		N ymphs	adult ∂	adult ♀	Nymphs	adult 🕉	adult♀	
pyriproxyfen	Pesquard®		upper limit of the reproductive output of a	T	(live)	(live)	(live)	(live)	(live)	(live)	
	Professional		single ootheca, were used per replicate	Treatment 1: 0.50%	0.0 b	0.4 d	0.0 e	72.0a	0.0 c	1.6 c	
	Cockroach Gel			pyriproxyfen	(0.0)	(0.4)	(0.0)	(4.6)	(0.0)	(0.8)	
	Bait)		b) 5 replicates per treatment	Treatment	1.6 b	35.6a	37.6a	0.0 c	5.2 bc	1.6 c	
				2: Dog chow	(1.2)	(1.7)	(2.9)	(0.0)	(2.4)	(1.2)	
			c) 7 treatments 1 . O U812 Matrix containing 0 .50% w/w	Treatment	48.4a	14.0 bc	12.0 cd	0.0 c	4.0 bc	3.2 ć	
			pvriproxyfen	3: Placebo	(4.3)	(3.2)	(3.3)	(0.0)	(1.1)	(1.2)	
			A im: to assess the morphological abnormalities	Treatment							
			induced by dietary exposure to pyriproxyfen in	4: 0.10%	31.6 a	13.2c	17.2 bc	0.0 c	5.2 bc	6.0 bc	
			cockroach bait.	PYR frass in	(8.6)	(3.8)	(3.4)	(0.0)	(1.4)	(2.4)	
				placebo							
			2.Dog chow	Treatment	26.4-			0.0.5	16.0-	10.0-	
			A im: to measure the background frequency of	5: 1.0% PYR	36.4 a	6.8 cd (1.5)	2.8 de (0.5)	0.0 c (0.0)	16.0a (1.8)	18.8a (4.5)	
			morphological abnormalities under a standard	frassin placebo	(9.3)	(1.5)	(0.5)	(0.0)	(1.0)	(4.5)	
			balanced feeding regimes used successfully in	Treatment							
			MGK's cockroach rearing program.	6: 10.0%	0.0 b	0.0 d	0.0 e	33.6b	11.2 ab	14.0 ab	
			3.0U812 Matrix (placebo)	PYR frass in	(0.0)	(0.0)	(0.0)	(10.1)	(3.1)	(3.7)	
			A im: to assess developmental impact and	placebo		()	(/	x - 7	(-)	(-)	
			abnormalities associated with continuous	Treat ment	30.8a	24.0b	22.8b	0.0 c	3.6 bc	2.0 c	
			dietary exposure to the placebo matrix of the	7:10.0%PL	(7.0)	(4.4)	(2.5)	(0.0)	(1.3)	(1.6)	

		Experime	ntal data on the efficacy of the	biocidal p	roduct	agains	t targe	et organi	ism(s)		
Function and Field of use envisaged	Test substance	Test organism(s)	Test method, Test system / concentrations applied / exposure time		_	Tes	t results:	effects			Reference
				frass in placebo Different letters ((SEM) = (Stand The consumpti developmental	darderroro on of frass o	fthe mea containing	n) pyriproxyl	fen has a sigi	nificant morp		
			5. O U812 Matrix incorporating cockroach faeces/frass (1.0% w/w) collected from adult male cockroaches fed only with OU812 Matrix with 0.50% w/w pyriproxyfen separately. A im: to assess the morphological and developmental impact associated with an intermediate level of coprophagy of frass pellets deposited by cockroaches consuming 0.50% w/w pyriproxyfen containing bait product. 6. O U812 Matrix incorporating cockroach faeces/frass (10.0% w/w) collected from adult male cockroaches fed only with OU812 Matrix	Table 2. Morp during the 98- Treatment Treatment	day duration Normal Nymphs (dead)	nofthest Percen Normal adult ♂ (dead)	udy. tage (SEM Normal adult ♀ (dead)) individuals A bnormal N y mphs (dead)	per category A bnormal adult ♂ (dead)	Abnormal adult ♀ (dead)	
			with 0.50% w/w pyriproxyfen separately. A im: to assess the morphological and developmental impact associated with a high level of coprophagy of frass pellets deposited by cockroaches consuming 0.50% w/w pyriproxyfen containing bait product.	1: 0.50% pyriproxyfen Treat ment 2: Dog chow Treat ment 3: Placebo Treat ment	8.8 a (7.3) 9.2 a (3.6) 6.4 a (2.7)	0.0 a (0.0) 2.0 a (1.6) 2.4 a (0.4)	0.8 a (0.8) 4.4 a (2.1) 5.6 a (2.0)	6.8 a (3.4) 0.4 a (0.4) 1.6 a (0.8)	1.2 ab (0.8) 1.2 ab (0.8) 0.4 b (0.4)	8.4 ab (3.0) 1.2 b (1.2) 2.0 b (1.1)	
			7. O U812 M atrix incorporating cockroach faeces (10.0% w/w) collected from a dult male cockroaches fed only with OU812 Placebo Matrix separately. A im: to assess the morphological and developmental impact associated with a high	4: 0.10% PYR frass in placebo Treatment 5: 1.0% PYR frass in	5.6 a (1.6) 8.4 a (6.9)	5.6 a (4.2) 0.4 a (0.4)	2.0 a (1.1) 0.4 a (0.4)	6.4 a (2.5) 4.4 a (1.5)	3.2 ab (1.5) 2.4 ab (1.0)	4.8 b (1.0) 3.2 b (1.6)	
			level of coprophagy of frass pellets deposited by cockroaches consuming the no treatment (placebo) bait product. cockroaches consuming the bait product.	placebo Treatment 6: 10.0% PYR frass in placebo	7.2 a (5.3)	0.0 a (0.0)	(0.1) 0.4 a (0.4)	(1.3) 14.0 a (7.3)	5.6 a (2.4)	14.0 a (3.9)	
			d) 1 cockroach s pecies								

PT18

		Experime	ntal data on the efficacy of the	biocidal p	roduct	agains	st targe	t organ	ism(s)		
Function and Field of use envisaged	Test substance	Test organism(s)	Test method, Test system / concentrations applied / exposure timee)A rena s urface: (33cmx19cmx10.8cm = 6.771,6 cm² = 0.68 m² floor area)	Test results: effects							
				Treatment 7: 10.0% PL frass in placebo	5.2 a (1.2)	3.6 a (2.6)	2.0 a (1.1)	1.6 a (0.8)	0.4 b (0.4)	4.0 b (1.7)	
			f) Dosage: 0.75g per arena	Different letters within a column indicate significant differences (Tukey's HSD; P < 0.05).							
				live, dead male, female abnormal phenotype).				% Abnorma			
		Treatment 1: 0.50% pyriprox		rinmyvfen	1	Phenotype 11.2 c					
				Treatment 2: Dog chow				9.2 c			
				Treatment 3: Placebo				9.6 c			
				Treatment 4: 0.10% PYR frass in placebo Treatment 5: 1.0% PYR frass in placebo				19.2			
									40.4 a		
					:1.0%PYH	R frass in p	lacebo		40.40	D I	
				Treatment 6: Treatment 7:	:10.0%P\ :10.0%Pl	/R frass in frass in p	placebo lacebo		44.8 10.0	a C	
				Treatment 6: Treatment 7: Different letters v Table 5. Frequ	: 10.0% PY : 10.0% PI vithin a colu Jency of ab	(R frassin _ frass in p imn indicate onormal ph	placebo lacebo e significant enotype i n		44.8; 10.0; Tukey's HSD;	a c P < 0.05).	e d
				Treatment 6: Treatment 7: Different letters v	: 10.0% PY : 10.0% PI vithin a colu Jency of ab	(R frassin _ frass in p imn indicate onormal ph	placebo lacebo e significant enotype i n	immature	44.8; 10.0; Tukey's HSD;	a <u>c</u> P < 0.05). nes (combin	e d
				Treatment 6: Treatment 7: Different letters v Table 5. Frequ category of live	10.0% PY 10.0% PI vithin a colu uency of ab dead abn	(R frass in p _ frass in p umn indicate pnormal phe ormal phe	placebo lacebo e significant enotype i n notype).	immature	44.8; 10.00 Tukey's HSD; e cockroach Abnormal I	a c P < 0.05). nes (combin (mmature ype	e d
				Treatment 6: Treatment 7: Different letters v Table 5. Frequ category of live Treatment	: 10.0% PY : 10.0% PI within a colu uency of ab e, dead abn : 0.50% py	(R frass in p _ frass in p umn indicate pnormal pher ormal pher	placebo lacebo e significant enotype i n notype).	immature	44.8; 10.00 Tukey's HSD; e cockroach Abnormal I Phenot	a c P < 0.05). nes (combin (mmature ype a	e d
				Treatment 6: Treatment 7: Different letters v Table 5. Frequ category of live Treatment Treatment 1:	: 10.0% PY : 10.0% PI vithin a colu uency of ab : , dead abn : 0.50% py : Dog c how	(R frass in p _ frass in p umn indicate pnormal pher ormal pher	placebo lacebo e significant enotype i n notype).	immature	44.8 10.0 Tukey's HSD; cockroach Abnormal I Phenoty 78.8	a c P < 0.05). nes (combin (mmature ype a	e d
				Treatment 6: Treatment 7: Different letters v Table 5. Frequ category of live Treatment Treatment 1: Treatment 2:	10.0% PY 10.0% PI vithin a colu uency of ab uency of	(R frass in p - frass in p imn indicate onormal ph ormal phen rriproxyfen	placebo lacebo e significant enotype i n notype).	immature	44.8 10.0 Tukey's HSD; e cockroach Abnormal I Phenoty 78.8 0.4 c	a c P < 0.05). nes (combin (mmature ype a	e d

	Experime	ntal data on the efficacy of the	biocidal j	product against targe	et organism(s)	
Test substance	Test organism(s)	Test method, Test system / concentrations applied / exposure time		Test results:	effects	Reference
					47.6 b	
			Table 6. No	rmalized frequency of abnorm	al phenotype development in Germa	n
				exposed to various dietal y regime		
				1.0.50% pyriproxyfen		
				2		
					48.9 b	
					99.6 a	1
					12.2 c	
			Different letters	within a column indicate significan	t differences (Tukey's HSD; $P < 0.05$).	
(identical to	German cockroach (Blattella	Laboratory choice trial a) Cockroach gel baits tested in the study:	abnormally (no Table 1. Effic	t developing to the next instar or be acy of cockroach baits deployed i EM). Values in bold indicate mort	ecoming sterile). In a choice test en vironment (average % ality $\ge 90\%$.	
Pesguard [®] Professional	germanica)		Day	+ Dog chow	Dog chow + Dog chow	
Cockroach Gel			1	9.0 ± 2.57	0.0 ± 0.0	
Bait)		Dog chow was the alternative food	2	50.3 ± 3.52	0.3 ± 0.33	
			3	79.3±4.02	0.3±0.33	
			4	95.0 ± 1.69	0.3 ± 0.33	
			5	98.7 ± 0.67	0.3 ± 0.33	
			6	99.0 ± 0.68	0.3 ± 0.33	
, , , ,		per arena or 300 cockroaches per treatment), which mimics a high infestation of 74 cockroaches in 0.09m ²) A rena surface: 33 cm x 19 cm x 10.8 cm clear plastic shoe boxes =627 cm ² = 0.63 m ² floor arena Dos age rate: The applied bait amount (0.04 g of bait per s pot) corresponds to a label rate of	SEM = Stand German cock significant pre effect associa observed in th Mortality: Dur (0.30% at the reached 95%	oaches fed rapidly on cockroach ference towards cockroach bait o ted with randomized bait placem ing control (dog chow only) treatm ing the course of the study, the e termination of the study on day provided a very fast overall effic	over dog chow. There was no positiona ents shown by the similar consumptio nent. untreated control mortality remained low 14). The experimental cockroach bai acy against German cockroaches. Mortalit	ıl n v
	substance (identical to Pes guard® P rofessional C ockroach Gel	Test substance Test organism(s) Image: Constant of the system of the s	Test substance Test organism(s) Test method, Test system / concentrations applied / exposure time (identical to Pesguard® Professional Cockroach Gel Bait) containing 0.5 % w/w pyriproxyfen German cockroach (Biattella germanica) Laboratory choice trial a) C ockroach gel baits tested in the study: - Cockroach gel bait placements of 0.48 g bait per - Cockroach gel bait placements of 0.48 g bait per - Cockroach gel b	Test substance Test organism(s) Test method, Test system / concentrations applied / exposure time Treatment Treatment Table 6. No cockroaches e Treatment Table 6. No cockroaches e Treatment Identical to Professional Cockroach Gel Bait) containing 0.5% w/w clothianidin + 0.5% w/w pyriproxyfen Laboratory choice trial a) C ockroach gel baits tested in the study: codmack gel baits tested in the study: cockroach Gel Bait) 0.5% w/w clothianidin + 0.5% w/w 0.5% w/w clothianidin + 0.5% w/w clothianidin + 0.5% w/w Laboratory choice trial a) C ockroach gel baits tested in the study: cockroach Gel b) Test method: arena choice-test bioassay (alternative food: dog chow) c) E xperimental design: completely randomized block design d) Replications: 6 (50 adult male cockroaches per arena or 300 cockroaches per treatment) which mimics a high infestation of 74 cockroaches in 0.09m ²) SEM = Standi German cockr significant pre effect associa arena A rena surface: 33 cm x 19 cm x 10.8 cm clear plastic shoe boxes = 627 cm ² = 0.63 m ² filoro arena SEM = Standi bit mouth collage area: The applied bait amount (0.04 g of bait per spot) corresponds to a label rate of 12 bait placements of 0.48 g bait per	Test substance Test organism(s) Test method, Test system / concentrations applied / exposure time Test results: Test substance Test organism(s) Test method, Test system / concentrations applied / exposure time Test results: Test substance Test organism(s) Test method, Test system / concentrations applied / exposure time Test meth 6: 10.0% PVR frass in placebo Different letters within a column indicate significan Table 6. Normalized frequency of abnom cockroache get application indicate significan Teatment 1: 0.50% pyriproxyfen Treatment 1: 10.0% PVR frass in placebo Treatment 2: Dog chow Treatment 2: 10.0% PVR frass in placebo Treatment 2: 0.0% PVR frass in	substance organism(s) concentrations applied / exposure time Testment 6: 10.0% PYR frass in placebo 47.6 b Image: Second

		Experime	ntal data on the efficacy of the	biocidal produ	<mark>ıct agai</mark> r	<mark>nst targ</mark>	<mark>et organi</mark>	sm(s)	
Function and Field of use envisaged	Test substance	Test organism(s)	Test method, Test system / concentrations applied / exposure time		т	est results	effects		Reference
			application rate for heavy infestations. This bait application amount was selected to provide sufficient amount of bait for at least a single initial feeding bout on the bait for all cockroaches present in the arena. Provisioning a lower amount of bait would result in insufficient food acquisition by the cockroaches, leading to uncontrolled experimental variation due to food availability, competition and cannibalism. Environmental conditions: 25 °C, 60% RH nd 11:13(L:D) regime.						
<i>PT18</i> Clothianidin/N ylar		German cockroach (Blattella germanica)	Laboratory choice trial Test design: - 100 male (1-2w old) cockroaches per replicate.	Table 1: Consumptio	n ofcockroad	ch bait and r	nouse pellet (=control)	
	(containing 0.5% w/w clothianidin and 0.5% w/w pyriproxyfen) identical to	Laboratory strain (Sumitomo), originally sourced in 1997 from the Vector	 a) (fresh s ample) b) (aged sample) - A rena surface: (35 x 26 x 10 cm = 9100 cm²) 	C lothianidin/Nylar 0.5% w/w/0.5% w/w	Fresh sample Aged sample	Mous Totalfoo E Mous	ait sepellet d consumed sait sepellet	0.307g (100%) 0.000g (0%) 0.307g 0.329g (99%) 0.002g (1%)	
	Pesguard [®] Professional Cockroach Gel Bait.	Unitof Universityof Science Malaysia	= 0.91 m² floor area) - Dosage : 1g of bait - A lternative food: 1g of mouse pellet	Control A Mouse Pellets (Challenge Diet)	N/A	E Mous	d consumed Bait Sepellet d consumed	0.331g N/A 1.184g (100%) 1.184g	
		(USM).	•Mortality in the treatment replicates was corrected for the natural mortality using Control A, as follows: Corrected Mortality (%) = [(M – Mc)/(100 –		er ambient roc rage of 5 repli	stored at 54° om conditions icates) was th	C for 2 weeks p until the exper ne amount of ba	prior to the experiment. Fres riment. ait (food) consumed (in	1
			Mc)] × 100 M was percentage mortality for treatment replicates, while Mc was percentage mortality observed in Control A replicate	When the mouse pellet (same tray alongside with preferred to feed on the	h the	as th	e challenge diet	hes in EHTC) was placed in t t, German cockroaches consumption), indicating the	
			•A mount of food (or bait) consumed by cockroaches in treatment replicates were adjusted for moisture loss using following	high palatability of the Table 2 : Moisture Los	ss of the Bait	- T	sh and aged sa	mples	
			formula: A mount consumed =(T otal weight loss in		Sample			of Bait / Food*]
			treatment × final weight in Control B) / Initial	Sample	conditio				
			weight in Control B		Freshsam Agedsam				$\left\{ \right\}$
			Environmental conditions: 24-28 ℃, 40-80% RH.	Mouse Pellets (Challenge Diet)	N/A	1.1	43g 1.15	58g 0.015g (-1%)]
				*Mean of 5 replicates					

		Experime	ntal data on the efficacy of the	biocidal pr	oduct a	gain	st tai	get o	rgani	ism(s	;)			
Function and Field of use envisaged	Test substance	Test organism(s)	Test method, Test system / concentrations applied / exposure time			Те	st resu	lts: effe	ects				Refei	rene
				**Positive values indicate either no moisture from the Table 3: A ccum Sample	water loss, o air	r the ba ality	it or food	l (mouse	pallet) h	ad gaine	d weigh	t by absor	bing	
					Freshsam	ple	77 9	6 99		100		100 10	00	
				Control A MousePellets	Agedsam N/A	ple		7 100	0 100	100	100 0	100 10 0 0		
				(Challenge Diet)	,,,				Ũ	°,	Ū			
				*Values were accu Efficacy of both fr at an application r	resh and artif ate of 1 g pe	icially ag	ged bait of 0.09 r	was dem n².	onstrated	l at >95	% morta		day	
T18	Pesguard [®] Gel		Field trial in a multi-family public	Table 1: B. gern	<i>nanica,</i> cocl							-		
esguard® rofessional	(containing 0.5% w/w	cockroach (Blattella	accommodation (German cockroach) or restaurants/bakeries etc. (oriental cockroach).			-10.5 days	+1 day	+7 days	+14 days	+30 days				
ockroach Gel	clothianidin and 0.5% w/w		In Bayonne (64 area- France). Test design:	Test product - L		52.4	54.0	9.4	6.6	2.2	4.6	2.2		
ait	pyriproxyfen) identical to	cockroach (<i>Blatta</i>	- The sticky traps were placed overnight at each test site	Test product - N dose	1 edium	64.0	61.6	9.6	6.4	2.0	7.4	3.6		
	Pesguard® Professional	orientalis)	- A site was viable if it had a minimum pre- count of 16-20 German cockroaches and/or 10	Test product - H	5	103.6			7.8	17.2	18.2	-		
	Cockroach Gel Bait.		oriental cockroaches. - Two pre-counts were made at Day - 14 and Day - 7: the mean of these values gave the pre-treatment infestation level. - 5 untreated sites	Table 2: Percer		46.6 luction +1 day	50.6 of <i>Blatte</i>	7 +	14	50.8 opulatio +30 lays	48.2 ns after +60 days		nt	
			- 15 treatment sites divided into three groups	Testproduct-L		-4,3	82	,7 88	3,2 9	96,2	91,9	96,1		
			of five: Low (maintenance) dose Medium (light infestation) dose and High (heavy infestation) dose	Testproduct-M dose	1 edi um	3,9	84	,8 90),3 9	97,3	89,3	95		
				Test product - H	lighdose	1,2	85	1	1-	86	85,4	90,9		
			- 1 treatment: - 2 cockroach species	Untreated For low dose tre and high dose tr			ulation re	eduction	was fou				dium	
			-Dosage: The number of 4 mm diameters pots (approximatively 0.032 g of bait) applied per	Table 3: B. orier	<i>ntalis</i> , cockr		1		1				_	
			m^{2} in relation to the infestation level: Low: 1 - 2 spots	r		-10.5 days	day	+7 days			day	s days		
			Medium: 3 - 6 spots High: 6 -10 spots	Test product - L	.ow dose	12.2	12.0	2.4	1.2	0.2	1.4	0.6		

		слренше	ntal data on the efficacy of the	biocidal prod	luct again	st tar	get or	ganis	m(s)			
Function and Field of use envisaged	Test substance	Test organism(s)	Test method, Test system / concentrations applied / exposure time		Те	st result	s: effect	ts				Refe
			- A pplication: Bait was applied under the fridge,	Test product - Medi dose	lium 22.8	22.6	4.4	0.6	0.8	1.2	1.0	
			under the kitchen sink, under the oven and the water-heater and on all cracks and crevices	Test product - High	ndose 27.4	25.8	2.4	1.2	1.0	1.0	0.4	
			that can be a harbourage for cock roaches.	Untreated	11.2	11.2	10.8	11.8	11	11.4	10.8	
				Table 4: Percentage	es of reduction	of <i>Blatta</i> (orientalis'	'populat	tions aft	ter treati	ment	
			 The number of trapped cockroaches were counted, (instar, adult males and females). 		+1	+7				+60	+70	
			counted, (mstal, aduit males and remales).		day	days	s day	s day	ys d	days	days	
			and 70 days after treatment.	Test product - Low of Test product - Medi		83,1	. 91,9	9 98	8,8 9	90,4	96	
				dose	-1,3	81,2	97,6	6 96	5,7 9	94,7	95,9	
			The trial was conducted from August to November 2015	Test product - High	ndose 6,2	91,8	95,9	9 96	5,7 9	96,2	98,6	
				Untreated	2	5,3	-8,9) 1,	,3	-3,7	3,1	
				For high dose treatr	ment >90% por	ulation re	eduction v	vas foun	nd after	7 davs.	Forlowan	d
PT18 Pesquard [®]	Cockroach bait -	A merican cockroach	 Laboratory choice trial	Table 1: Consumpt	ion of cockroact	baitanc	I mouse p	ellet				
esguard [®] Professional	-		Test design: - 20 adult male cockroaches per replicate.	Table 1: Consumpt	tion of c ockroact Sample Condition ¹		l mouse p &mouse		s	A mor		
esguard [®] rofessional ockroach Gel	-	cockroach (Periplaneta	Test design: - 20 adult male cockroaches per replicate. - 5 replicates per treatment per species		Sample Condition ¹	Bait	&mouse Bait	pellets	0	consur .592 g (ned² 100%)	
esguard [®] rofessional ockroach Gel	- (containing 0.5% w/w clothianidin	cockroach (Periplaneta	Test design: - 20 adult male cockroaches per replicate. - 5 replicates per treatment per species - 2 treatments:		Sample Condition ¹ Fresh	Bait	&mouse Bait Mousepe	e pellets	0	consur 0.592 g (0.000 g	med² (100%) (0%)	
esguard [®] rofessional ockroach Gel	- (containing 0.5% w/w clothianidin and 0.5% w/w	cockroach (Periplaneta	Test design: - 20 adult male cockroaches per replicate. - 5 replicates per treatment per species - 2 treatments: a) (fresh sample)		Sample Condition ¹	Bait	& mouse Bait Mouse pe al food co	e pellets Ilets	0	consur 592 g (0.000 g 0.592	med ² (100%) (0%) 2 g	
esguard [®] rofessional ockroach Gel	- (containing 0.5% w/w clothianidin and 0.5% w/w pyriproxyfen)	cockroach (Periplaneta	Test design: - 20 adult male cockroaches per replicate. - 5 replicates per treatment per species - 2 treatments:		Sample Condition ¹ Fresh sample	Bait	&mouse Bait Mousepe al food co Bait	e pellets Illets Insumed	0	consur 0.592 g (0.000 g 0.592 0.613 g (med ² (100%) (0%) 2 g (100%)	
esguard [®] rofessional cockroach Gel	- (containing 0.5% w/w clothianidin and 0.5% w/w	cockroach (Periplaneta	Test design: - 20 adult male cockroaches per replicate. - 5 replicates per treatment per species - 2 treatments: a) (fresh sample)		Sample Condition ¹ Fresh	Bait Tota	& mouse Bait Mousepe al foodco Bait Mousepe	e pellets Illets Insumed	0	consur 0.592 g (0.000 g 0.592 0.613 g (0.000 g	ned² (100%) (0%) 2 g (100%) (0%)	
7718 Pesguard [®] Professional Cockroach Gel Bait	- (containing 0.5% w/w clothianidin and 0.5% w/w pyriproxyfen) identical to <i>Pesguard</i> ® Professional	cockroach (Periplaneta	Test design: - 20 adult male cockroaches per replicate. - 5 replicates per treatment per species - 2 treatments: a) (fresh s ample) b) (aged sample) - A rena surface: (35 x 26 x 10 cm = 9100 cm ²		Sample Condition ¹ Fresh sample	Bait Tota	&mouse Bait Mousepe al food co Bait	e pellets Illets Insumed	0	consur 0.592 g (0.000 g 0.592 0.613 g (med ² (100%) (0%) 2 g (100%) (0%) 3 g	
esguard [®] rofessional Cockroach Gel	- (containing 0.5 % w/w clothianidin and 0.5% w/w pyriproxyfen) identical to <i>Pesguard</i> ® Professional Cockroach Gel	cockroach (Periplaneta	Test design: - 20 adult male cockroaches per replicate. - 5 replicates pertreatment per species - 2 treatments: a) (fresh s ample) b) (aged sample) - A rena surface: (35 x 26 x 10 cm = 9100 cm ² = 0.91 m ² floor area)	Sample Control A Mouse pellets (Normal	Sample Condition ¹ Fresh sample	Bait Tota	&mouse Bait Mousepe al food co Bait Mousepe al food co Bait Mousepe	e pellets Illets Illets Illets Insumed	0	consur 0.592 g (0.000 g 0.613 g (0.000 g 0.613 N// 2.390 g (ned² (100%) (0%) 2 g (100%) (0%) 3 g A (100%)	
esguard [®] rofessional ockroach Gel	- (containing 0.5% w/w clothianidin and 0.5% w/w pyriproxyfen) identical to <i>Pesguard</i> ® Professional	cockroach (Periplaneta	Test design: - 20 adult male cockroaches per replicate. - 5 replicates per treatment per species - 2 treatments: a) (fresh s ample) b) (aged sample) - A rena surface: (35 x 26 x 10 cm = 9100 cm ²	Sample	Sample Condition ¹ Fresh sample A ged sample N/A	Bait Tota Tota Tota	&mouse Bait Mousepe al food co Bait Mousepe al food co Bait Mousepe al food co	e pellets Illets Illets Illets Insumed Illets Illets	0	consur 0.592 g (0.000 g 0.613 g (0.000 g 0.613 0.613 0.613 0.613 0.613 0.613 0.613 0.613 0.613 0.239 0 g (2.390 g (ned² (100%) (0%) 2 g (100%) (0%) 3 g A (100%) 0 g	

		Experime	ntal data on the efficacy of the	biocid	al pro	oduc	t a	gai	nst	taı	rge	t o	rga	nis	sm(s	5)								
Function and Field of use envisaged	Test substance	Test organism(s)	Test method, Test system / concentrations applied / exposure time					٦	۲est ۱	resu	lts: e	effe	ects							Reference				
			observed in Control A replicate •A mount of food (or bait) consumed by cockroaches in treatment replicates were																					
			adjusted for moisture loss using following	ted for moisture loss using following Table 2: Moisture loss of the Bait and Food (Control B)																				
			Amount consumed =(Total weight loss in treatment × final weight in ControlB)/Initial weight in ControlB	Sample		Weight of Bait			Bait /Food ¹ Weight															
				treatment × final weight in Control B) / Initial		Sample	e			Cond		-		Befor			ter		Los	ss ²				
									reshs				.036		1.2			0.75						
			Environmental conditions: 24-28 ℃, 4 0 - 80 % RH .	Contro	A Mous nal Road			A	geds N/				.108			30g		-0.1		1				
				values in weight by Table 3:	v absorb A ccumu	ing ma	oistur	re fro		eair			,		•	ellet	s)h	ad g	jaine	d				
				Sample	Sample Conditi	0.25			3			at va 6	rious da		%) ¹ 9 10	11	12	40	14					
					on Fresh	0.25	1 24	2 47				6 80	82 8		9 10 93 93	-	-	13 95	14 99					
					sample Aged sample	0	24 39	47 57				80 80	82 8	_	93 93 88 88	-								
				Control A Mouse pellets (Normal Roach diet)	N/A	0	0	0	0	0	0	0	0 ()	0 0	0	0	0	0					
				¹ V alues v moribund			itive	kills (mort	ality) of 5	rep	licate	s,v	vhich	inc	lude	dea	id an	d				
				Efficacy o >90% m bait.		within									emons , and 1					-				
T18	<i>Pesguard</i> ® Gel	American	Field trial in a multi-family public	Table 2 -	Reduct	ion (%	b) of I	Perip	laneta	a am	erica	<i>ina</i> p	opula	tior	s num	bers	afte	r trea	atmen	t				
esguard [®] Gel ait	Bait containing 0.5% w/w	(Periplaneta	ac commodation or restaurants/bakeries etc. in Bayonne (64 a rea-France) Test design:				+7 d				4 day				0 day		1	90 d						
	clothianidin+ 0.5% w/w	<i>americana</i>) and brown-banded			d Test design:	own-banded Test design:	Test pro		_	26.		_		6.0		_		38.9			92.			
	pyriproxyfen	cockroaches (Supella			ed		2.2	2		3	8.0				-13			-4.(0					
		(Supella longipalpa)			-A site was viable if it had a minimum pre- count of 16-20 American cockroaches or 10		- A site was viable if it had a minimum pre- count of 16-20 American cockroaches or 10		nipalpa) -A site was viable if it had a minimum pre- count of 16-20 American cockroaches or 10		Reduct	ion (%	o) of s	Supe	llalor	ngipa	alpa p	οορι	ulatior	s nı	umbers	afte	ertre	atme
			- Two pre-counts were made at Day - 14 and				+7	-			-14 c				30 day				avs					

Experimental data on the efficacy of the biocidal product against target organism(s)									
Function and Field of use envisaged	Test substance	Test organism(s)	Test method, Test system / concentrations applied / exposure time		Те	st results: effects			Reference
			Day - 7: the mean of these values gave the pre-treatment infestation level.	Test product	2.9	91.7	96.7	81.1	
			- 5 untreated sites	Untreated	10.2	-1.8	-8.5	-9.0	
			 5 treatment sites 1 treatment: Pes guard[®] Gel 2 cockroach species Dosage: The number of 5 mm diameters pots (approximatively 0.05g of bait) a p plied per m² in relation to the infestation level: A merican cockroaches: 2 to 6 spots per m² Brown-banded cockroaches: 1 to 2 spots per m² 		90% population	reduction at 14 day	/s after treatme	ent up to 30 days	
			- A pplication: Bait was applied under the fridge, under the kitchen sink, under the oven and the water-heater and on all cracks and crevices that can be a harbourage for cockroaches.						
			-Assessments: 7, 14, 30 and 90 days after treatment. -The results were given by a % reduction at each assessment: % reduction = ((Pi-Pn)/P1) x 100 Where Piis the pre-trapping infestation level (mean of the -14 days and -7 days as sessments), and Pnis the insects trapped at assessments are conducted in the untreated (control) locations.						
			Date of testing: September 2016 to January 2017. Brown banded cockroach:						
			multi-family public accommodation buildings. The heating for the entire building is under floor heating which is controlled by the apartment office and not by the individual residents.						
	- 72		A merican cockroach: in food storage rooms of restaurants, bakeries and butcheris						
	<i>Pesguard</i> ® Gel Bait containing		. Field trial in a multi-family public accommodation in Bayonne (64 area-France)	Table 1- Reduction					
Pesguard® Gel Bait	0.5% w/w	(Blattella	Test design:	L	+7 days	+30 days +60 d	ays +90 day	s +120 days	

		Experime	ntal data on the efficacy of the	biocidal proc	luct agai	inst targe	et organi	sm(s)		
Function and Field of use envisaged	Test substance	Test organism(s)	Test method, Test system / concentrations applied / exposure time			Test results:	effects			Reference
	clothianidin + 0.5% w/w	germanica)	- 5 sticky traps were placed overnight at each test site	<i>Pesguard</i> [®] gel bait	83.7	93.6	97.7	94.7	71.3	
	pyriproxyfen		-A site was viable if it had a minimum pre- count of 16-20 German cockroaches.	Untreated	-13.5	-2.8	-6.8	-19.1	-5.4	
			 Two pre-counts were made at Day - 14 and Day - 7: the mean of these values gave the pre-treatment infestation level. 5 untreated sites 5 treatment sites treated with <i>Pes guard</i>[®] Gel bait Dosage <i>Pes guard</i>[®] gel: The number of 5 mm diameter spots (approximatively 0.05 g of bait) applied per m² in relation to the infestation level: Light: 3-6 spots per m², i.e 27 and 34 spots in the 10 m² treated (2 apartments) Heavy: 6-10 spots per m², i.e. 50 to 52 in the 10 m² treated (3 apartments) A pplication: Bait was applied under the fridge, under the kitchen sink, under the oven and the water-heater and on all cracks and crevices that can be a harbourage for cockroaches. A ssessments: 7, 30, 60, 90 and 120 days after treatment. The results were given by a % reduction at each assessment: % reduction = ((Pi-Pn)/P1) x 100 Where Piis the pre-trapping infestation level (mean of the -14 days and -7 days assessments were conducted in the untreated (control) locations. Date of testing: August to October 2016. The heating for the entire building is under floor heating which is controlled by the apartment office and not by the individual 	Pesguard [®] gel bait days aftertreatmer reduction of the coo	nt up to 90 da	ys after treatn	nent. The eff	icacy dropp	th >90% at 30 ed to 71.3%	
PT18	<i>Pesguard</i> [®] Gel		residents. Laboratory choice trial							
Bait	Bait containing 0.5% w/w clothianidin +	(<i>Periplaneta americana</i>) and	Test design: - 30 cockroaches per replicate (10 adult male, 10 adult (non-gravid) female and 10	and 20 days for Am	mortality data	a at test end p iental cockroa	oints of 12 d ches	ays for Germa	ancockroaches	
	0.5% w/w	Oriental	advanced/mature stage (4-5 th instar)							<u> </u>

		Experime	ntal data on the efficacy of the	biocidal pr	oduct again	st target or	ganism(s)		
Function and Field of use envisaged	Test substance	Test organism(s)	Test method, Test system / concentrations applied / exposure time		Te	est results: effe	cts		Reference
	pyriproxyfen	cockroach (<i>Blatta</i>	nymphs). - 4 replicates pertreatment per species		<i>Pesguard®</i> gel (fresh)	<i>Pesguard®</i> gel (3year aged)	Control		
	Freshand 3 years old product	orientalis) and German cockroach (Blattella	3 treatments: a) Pes guard [®] gel b) Pes guard [®] gel, aged for +3 years	Blattella germanica (12 days)	100.0	100.0	4.7		
		(Batteria germanica)	d) Control - A rena : 38 x 27 x 28 cm Dos age : 1g of bait for German Cockroaches	Periplaneta Americana (20 days)	95.3	99.3	0.0		
			2 g of bait for America Cockroaches and O riental cockroaches.	<i>Blatta orientalis</i> (20 days)	100.0	98.7	13.3		
			A Iternative food source: bran pellets and a water source Trial duration: 20 days for America Cockroaches and Oriental cockroaches. 12 days for German cockroaches.	Efficacy of the te	est formulation was bait, both for fresh			n mortality after	
			Environmental conditions: - 1 2 : 1 2 light dark regime - temp : 23-30 °C - relative humidity: 2 5-54% RH						

Conclusion on the efficacy of the product

The efficacy package provided demonstrates that *Pesguard*[®] Gel is effective against German cockroaches (*Blattella germanica*), Brown banded cockroaches (*Supella longipalpa*), Oriental cockroaches (*Blatta orientalis*) and American Cockroaches (*Periplaneta americana*) both as nymphs and adults.

2.2.5.6 Occurrence of resistance and resistance management

Pyriproxyfen

Pyriproxyfen is a juvenile hormone analogue (or mimic) and an Insect Growth Regulator (IGR). It prevents juvenile-sensitive insect stages (larvae/nymphs) from developing into adults and therefore rendering them unable to reproduce.

Insect Growth Regulators (IGRs) have a unique mode of action, separate from most other chemical insecticides. They are quite selective in their mode of action and potentially act only on the target species.

Several features of insect growth regulators (IGRs) make them attractive as alternatives to broad-spectrum insecticides. Because they are more selective, they are less harmful to the environment and more compatible with pest management systems that include biological controls.

Although they are rarely fatal for adult insects, IGRs can prevent reproduction, egghatch, and moulting from one stage to the next. Many IGR products are mixed with other insecticides that kill adult insects, therefore reducing the population of existing adults, whilst also preventing any immature stages and eggs from developing into adults.

Another advantage of IGRs is their low toxicity to vertebrates (i.e. people, pets or other animals).

Due to their unique mode of action, biochemical insect growth regulators have played an important role in integrated pest management systems and as an effective resistance management tool.

Insects have demonstrated a propensity to develop resistance to insecticides. Broadspectrum insecticides that are used routinely will eventually lose their effectiveness due to resistance. Intelligent and strategic use of IGRs should reduce the likelihood of resistance developing.

There are indications that there is a possibility of development of resistance to IGRs in species specific to biocidal uses (as has been seen in crop protection). However, within the PT18 biocide use, the risk is not considered very high.

Clothianidin

Clothianidin belongs to the neonicotinoid chemical class.

Resistance and cross-resistance against neonicotinoids (chloronicotinyls like thiamethoxam, acetamiprid and imidacloprid), a group of insecticides acting agonistically on insect nicotinic acetylcholine receptors (nAChRs) can occur in relevant susceptible pests in Europe, particularly cockroaches^{1,2,3}.

Insect resistance has developed to the neonicotinoids in a number of species, most notably those of the orders Hemiptera (aphids, whiteflies, and plant hoppers) and Coleoptera (beetles), but are also active against some Lepidopteran species. The neonicotinoids are broad-spectrum insecticides; they are considered less harmful to the environment (as nicotinoids occur in a wide range of plant species). They are also of low toxicity to vertebrates (i.e. people, companion animals or other animals).

Resistance to the neonicotinoids has been confirmed in several insect species important in crop protection, such as *Aphis gossypii*. Whilst target site resistance has been confirmed in some species, such as *Bemisia tabaci*, (tobacco whitefly) and *Myzus*

persicae (Peach-potato aphid) the mechanisms for resistance remain unelucidated in others, such as *Leptinotarsa decemlineata*.

In general, precautions should be taken to reduce the possibility of insects developing resistance to neonicotinoid insecticides.

Resistance management

As part of the resistance management associated with IGRs (such as pyriproxyfen), IRAC (the Insecticide Resistance Action Committee) has recommended that for non-crop protection uses (such as the PT18 uses) IGRs should be used in mixture or co-formulation with insecticides with other modes of action. Similarly, with the recent occurrence in the USA of bed bug resistance to the neonicotinoid group of chemistry, and data from the above mentioned studies^{1,2,3} mixture or co-formulation with other modes of action would also seem prudent. This is especially important, as populations of cockroaches are already resistant to other insecticide modes of action. *Pesguard*[®] Gel bait combines two of the most effective non-pyrethroid modes of action, so it can be considered that this product fits well with the recommendations was: 'To prevent resistance the label should recommend alternation of the product with products containing an active substance with a different mode of action'. *Pesguard*[®] Gel bait achieves this within a co-formulated product with clothianidin.

Sumitomo has a resistance monitoring scheme in place for their biocidal products, monitoring feedback from customers and literature publications, for their biocidal products and monitoring of resistance to *Pesguard*[®] Gel bait will be carried out, once product authorisation is granted.

2.2.5.7 Known limitations

No limitations on efficacy have been found when the product is used according to the use instructions.

2.2.5.8 Evaluation of the label claims

LA BEL

Pesguard[®] Gel is effective against German cockroaches (*Blattella germanica*), Brown banded cockroaches (*Supella longipalpa*), Oriental cockroaches (*Blatta orientalis*) and American Cockroaches (*Periplaneta americana*) both as nymphs and as adults.

Use instructions

¹ Wen, Z. and J.G. Scott. (1997). Cross-Resistance to Imidacloprid in strains of german cockroach (Blattella germanica) and House Fly (Musca domestica). *Pesticide Science*, 49 367-371.

² Fardisi, M., Gondhalekar, A.D., Scharf, M.E. (2017). Development of Diagnostic Insecticide Concentrations and Assessment of Insecticide Susceptibility in German Cockroach (Dictyoptera: Blattellidae) Field Strains Collected From Public Housing. *Journal of Economic Entomology*, 110(3), 2017, 1210–1217

³ Ko AE, Bieman DN, Schal C, Silverman J (2016) Insecticide resistance and diminished secondary kill performance of bait formulations against German cockroaches (Dictyoptera: Blattellidae). *Pest Management Science* 72:1778–1784

The pre-filled plastic reservoir containing *Pesguard*[®] Gel is intended for use with the plunger provided or bait application devices common to the pest control industry. Refer to the manufacturer's instructions for directions on the use of the applicator. Inject the bait into cracks and crevices, void spaces, and other locations where insects may live, feed and breed. Such areas are generally warm/damp and dark (e.g. behind or under furniture or equipment) and inspection or trapping to confirm infestation is recommended prior to treatment. Ensure that any alternative food sources are removed and concentrate the bait placements as individual spots at cockroach activity sites (only in areas inaccessible to children and pets).

Do not apply *Pesguard*[®] Gel where it will come into contact with water or in areas that are routinely cleaned. Typically, cockroaches will die a few hours after a single feed on *Pesguard*[®] Gel. In infested premises, dead cockroaches will normally be seen within 24 hours of treatment.

Treated areas should be re-inspected after 1–2 weeks. Where initial infestation was heavy a second *Pesguard*[®] Gel application may be required if the first treatment has been consumed and live cockroaches are still present.

Remove the cap from the nozzle, touch the top to the surface to be treated, and push down on the plunger. Replace the cap on the dispenser after treatment is completed.

The bait will adhere to non-greasy or non-dusty surfaces and will remain pliable and palatable to roaches as long as it is visibly present.

A visual inspection of bait placements is recommended 2-4 weeks after the initial treatment. Reapply when bait is no longer visibly present, according to the level of infestation. Replace bait before it is completely consumed to keep cockroaches from returning.

Rate of application

Pesguard[®] Gel should be applied as a number of spots of approximately 4mm diameter (each spot comprising approximately 0.032g of bait). In cases of heavy infestation, where larger cockroaches are present, in areas that are particularly dirty or cluttered or where alternative sources of food cannot be entirely eliminated the higher application rate should be used.

Infestation level	Recommended application rate [number of 4mm diameter spots (approximately 0.032g of bait) per m ²]
Low	1 - 2
Medium	3 - 6
High	6 - 10

Efficacy against Blatella germanica

To demonstrate efficacy against *Blatella germanica*, three laboratory tests and two field tests were provided. Furthermore, a laboratory study with only pyriproxyfen as an active substance was provided to demonstrate the efficacy of the IGR active substance in the product to be authorized. No simulated use test is provided. However, the efficacy guidance states that simulated use tests can be waived if a robust field trial is provided. The eCA considers the field tests results sufficient to be able to waive the simulated use trial.

) efficacy of both fresh and +3 years aged bait was demonstrated at 100% mortality after 12 days.

In the first field test (**1** f

Evaluation of IGR study

In the laboratory study with only pyriproxyfen (developmental abnormalities in nymphs were demonstrated by dietary exposure to pyriproxyfen in immature German cockroaches. The bait product containing pyriproxyfen at 0.5% w/w was the most effective in controlling cockroaches by completely preventing the development of the normal phenotype in adult cockroaches. As an abnormal phenotype is indicative of reproductive inhibition in German cockroaches this result shows this product to be highly effective in controlling reproductive potential of the cockroaches.

The development of abnormal immature phenotype was not significantly different among control treatments (2, 3 and 7) and the two feeding regimes containing 0.1 and 1.0% w/w pyriproxyfen frass (6.4 and 4.4% abnormal nymphal phenotype, treatment 4 and 5, respectively, P>0.05, Tukey's HSD All-Pairwise Comparisons Test). However, consumption of a diet consisting of 10.0% w/w pyriproxyfen frass, treatment 6, provided a significant increase (14%) in the frequency of abnormal nymphal phenotypes (47.6%) which was significantly different from other treatments (P<0.05, Tukey's HSD All-Pairwise Comparisons Test).

Therefore, increasing the dose of pyriproxyfen containing frass in the bait (Treatment 5) resulted in a significant increase in the frequency of abnormal phenotype development over the control treatments (P<0.05, Tukey's HSD All-Pairwise Comparisons Test). From a field control perspective these results are even more important considering that one of the most difficult aspects of cockroach control is the high reproductive potential of the target species.

Based on all the provided efficacy data it can be concluded that $Pesguard^{\otimes}$ Gel is effective at application rates of 1-2, 3-6 and 6-10 spots of 0.032 g/m² against light, medium and heavy infestations of *Blatella germanica*.

According to the efficacy guidance a lab test is required in which 95% of the insects do not develop to the next instar. For this product family only one such test is provided with *Blatella germanica* and not with the other target species. However, this product family is not based solely on an IGR but on a combination of Pyriproxfen and Clothianidin, which is not an IGR. The combination of the two active substances is sufficient to reduce the population >80%, either by just killing or by preventing developing to the next instar. Therefore, the eCA does not consider it necessary to show that at least 95% does not develop in the next instar to authorise this product family.

Efficacy against Supella longipalpa

To demonstrate efficacy against *Supella longipalpa*, one laboratory test and one field test were provided. No simulated use test is provided. However, the efficacy guidance states

that simulated use tests can be waived if a robust field trial is provided. The eCA considers the field tests results sufficient to be able to waive the simulated use trial.

In the field test (**1990**) efficacy of the product was tested with 5 mm diameter spots (approximatively 0.05 g of bait) per m² in relation to the infestation level, that in this case was 1 to 2 spots per m² (0.05-0.10 g of bait). Results showed that for low infestation treatment, 96.7% population reduction was found after 30 days. Moreover, after 90 days 81.1% population reduction was still found.

Based on the provided efficacy data it can be concluded *Pesguard*[®] Gel is effective against infestations of *Supella longipalpa*.

Efficacy against Periplaneta americana

To demonstrate efficacy against *Periplaneta americana*, three laboratory tests and one field test were provided. No simulated use test is provided. However, the efficacy guidance states that simulated use tests can be waived if a robust field trial is provided. The eCA considers the field tests results sufficient to be able to waive the simulated use trial.

In the first laboratory test (arena/choice test, **1999**) 91% mortality was demonstrated after 8 days at an application rate of 0.3 ± 0.03 g (approx. 9-10 spots of 0.032 g/m^2) which is the recommended high application rate for heavy infestations. This application amount was selected to ensure a sufficient amount of bait was available at the start of the study to meet the consumption needs of all the cockroaches. Preliminary work indicated that provisioning a lower amount of bait would result in insufficient food acquisition by the cockroaches, leading to uncontrolled experimental variation due to food availability, competition and cannibalism.

In the second laboratory test (laboratory/choice test, **1990**) efficacy of both fresh and artificially aged bait was demonstrated at 95% mortality after 13 days day at an application rate of 1 g per arena of 0.09 m² with a palatability of 100% for both fresh and artificially aged product. In the third laboratory test (palatability test, **1990**) efficacy of both fresh and +3 years aged bait was demonstrated at >95% mortality after 20 days.

In the field test (**1990**) efficacy of the product was tested with 5 mm diameter spots (approximatively 0.05 g of bait) per m² in relation to the infestation level, that in this case was 2 to 6 spots per m² (0.10-0.3 g of bait which corresponds to a medium-high label rate of 3-9 spots of 0.032g). Results showed that for low infestation treatment 92.5% population reduction was found after 90 days.

Based on the provided efficacy data it can be concluded $Pesguard^{\mathbb{R}}$ Gel is effective against infestations of *Periplana americana*.

Efficacy against Blatta orientalis

To demonstrate efficacy against *Blatta orientalis*, one laboratory test and one field test were provided. No simulated use test is provided. However, the efficacy guidance states that simulated use tests can be waived if a robust field trial is provided. The eCA considers the field tests results sufficient to be able to waive the simulated use trial.

In the field test (**1990**) efficacy of the product was tested at three infestation levels and the claimed application rates for those levels; Low (1-2 spots per m² (0.032 g of bait per spot)), medium (3-6 spots per m²) and high (6-10 spots per m²). For low and medium infestation treatment >90% population reduction was found after 14 days and lasted until the end of the observation period (70 days). For high infestation treatment >90% population rates found after 7 days up to 70 days.

In the laboratory test (palatability test, **between test**) efficacy of both fresh and +3 years aged bait was demonstrated at >95% mortality after 20 days.

Based on the provided efficacy data it can be concluded $Pesguard^{(R)}$ Gel is effective against infestations of *Blatta orientalis*.

<u>Shelf-life</u>

For two cockroach species (*Blatella germanica* and *Periplaneta Americana*), efficacy and palatability of artificially aged bait was demonstrated in efficacy studies

and **Americana** and **Blatta orientalis**) efficacy and palatability was demonstrated for 3-year old bait (**Mathematica**).

For the other claimed cockroach species (*Supella longipalpa*), no data on palatability/efficacy of the aged bait was provided. As the product contains a preservative, the claimed shelf-life of 2 years is acceptable for all claimed target species in line with the Technical Agreements for Biocides (section D.7 Shelf life of PT18 bait products).

2.2.5.9 Relevant information if the product is intended to be authorised for use with other biocidal product(s)

The product is not intended to be used with other biocidal products.

2.2.6 Risk assessment for human health

Studies for acute oral and dermal toxicity, skin and eye corrosion/irritation and skin sensitisation were provided in which was tested. *Pesguard*[®] Gel was originally referred to by the experimental formulation known as **second**. This was later changed to a "registration code number" **Second**. In other words, **second** (containing 0.5% w/w clothianidin and 0.5% w/w pyriproxyfen) is identical to *Pesguard*[®] Gel.

2.2.6.1 Assessment of effects on Human Health

Skin corrosion and irritation

Su	mmary tab	le of animal stud	lies on skin corros	ion / irritation	
Method,	Species,	Test	Results	Remarks	Referen
Guideline,	Strain,	substance,	Average score	(e.g. major	се
GLP	Sex,	Vehicle, Dose	(24, 48, 72h)/	deviations)	
status,	No/grou	levels,	observations and		
Reliability	р	Duration of	time point of		
		exposure	onset,		
			reversibility;		
			other adverse		
			local / systemic		
			effects,		
			histopathological		
			findings		
EPA OPPTS	Rabbits,	0.5 ml, 4 h	Not irritating	None	
870.2500	New	exposure	(0 at all	None	
(Acute	Zealand	chpobale	timepoints)		
Dermal	White, 3				
Irritation)	Females				
OECD	i cindico				
Guideline					
404 (Acute					
Dermal					
Irritation /					
Corrosion)					

No human data are available.

Conclusion used in 	Risk Assessment – Skin corrosion and irritation
Value/conclusion	The product does not require classification for skin irritation according to Regulation (EC) No 1272/2008.
Justification for the value/conclusion	A primary skin irritation test was conducted with rabbits to determine the potential for to produce irritation after a single topical application. 0.5 ml of the test substance was applied to the skin of three healthy rabbits for 4 hours. Following exposure, dermal irritation was evaluated by the method of Draize <i>et al</i> . No skin irritation was observed in two animals during the study. Within 30-60 minutes of patch removal, one treated site exhibited very slight erythema. The overall incidence and severity of irritation decreased with time. The affected animal was free of dermal

	irritation by 24 hours.
	Note: study was conducted as required by the US EPA to support the registration at EPA.
Classification of the product according to CLP and DSD	Not classified

Eye irritation

Summary table of animal studies on serious eye damage and eye irritation						
Method,	Species,	Test	Results	Remarks	Referen	
Guideline,	Strain,	substance	Average score (24,	(e.g.	се	
GLP status,	Sex,	, Dose	48, 72h)/	major		
Reliability	No/group	levels,	observations and	deviations		
		Duration	time point of onset,)		
		of	reversibility			
		exposure				
EPA OPPTS 870.2400 (Acute Eye Irritation) OECD Guideline 405 (Acute Eye Irritation / Corrosion)	Rabbits, New Zealand White, 3 Females	0.1 ml/animal	All scores for cornea, iris and conjunctivae were 0 at 24h, 48h and 72h. Not irritating to eyes	None		

No human data are available.

Conclusion used in I	Risk Assessment – Eye irritation	
Value/conclusion	The product does not require classification for eye irritation according to Regulation (EC) No 1272/2008.	
Justification for the value/conclusion	A primary eye irritation test was conducted with rabbits to determine the potential for second second second to produce irritation from a single instillation via the ocular route.	
	A volume of 0.1 ml of the test substance was instilled into the right eye of three healthy rabbits. The left eye remained untreated and served as a control. Ocular irritation was evaluated by the method of Draize et al. No corneal opacity or iritis was observed in any treated eye during this study. One hour after test substance instillation, minimal conjunctivitis was noted for all three treated eyes. The overall incidence and severity of irritation decreased thereafter. All animals were free of ocular irritation by 48 hours. Note: study was conducted as required by the US EPA to support the registration at EPA.	
Classification of the product according to	Not classified	

CLP and DSD

Respiratory tract irritation

Data waiving	
Information	Respiratory tract irritation
requirement	
Justification	Based on the calculation method described in Annex I of Regulation 1272/2008/EC, no classification for respiratory tract irritation is warranted for <i>Pesguard®</i> Gel. Furthermore, exposure to humans <i>via</i> inhalation is very unlikely given that the product is a gelatinous solid.
	Details of the product composition are presented in Section 2. There are no components of the product classified for respiratory tract irritation or acute respiration toxicity. A study is not required, nor considered an appropriate use of animals.

Skin sensitisation

	Summary table of animal studies on skin sensitisation						
Method, Guideline, GLP status, Reliability	Species, Strain, Sex, No/group	Test substance, Vehicle, Dose levels, duration of exposure Route of exposure (topical/intr adermal, if relevant)	Results (EC3-value or amount of sensitised animals at induction dose); evidence for local or systemic toxicity (time course of onset)	Remarks (e.g. major deviations)	Reference		
EPA OPPTS 870.2600 (Skin Sensitisation) OECD Guideline 406 (Skin Sensitisation)	Guinea pig; Hartley; 10 ♀ and 10 ♂	0.45 ml applied neat, 6h exposure, topical application	The product is considered to be a skin sensitiser.	None			

No human data are available.

Conclusion used in Risk Assessment – Skin sensitisation				
Value/conclusion	Skin sensitiser			
Justification for the value/conclusion	A dermal sensitisation test was conducted with guinea pigs to determine the potential for to produce sensitisation after repeated topical applications. The neat test substance was topically applied to twenty healthy test guinea pigs, once each week for a three-week induction period. Twenty-eight days after the first induction dose, a challenge dose of the test substance at its highest non-irritating concentration (HNIC, determined in the preliminary irritation screen to be 100%) was applied to a naive site on each guinea pig. A naive control group (ten animals) was maintained under the same environmental conditions and treated with the test substance at challenge only. Approximately 24 and 48 hours after each induction and challenge dose, the animals were scored for erythema. Based on the results of this study, the test substance is considered to be a contact sensitiser. The positive response observed in the historical positive control validation study with alpha-Hexylcinnamaldehyde, ≥95% (HCA) validates the test system used in this study. Note: study was conducted as required by the US EPA to support the registration at EPA. Note eCA: Based on the positive Buehler study, <i>Pesguard®</i> Gel is classified with H317.			
Classification of the product according to CLP and DSD	Skin Sens. 1; H317: May cause an allergic skin reaction.			

Respiratory sensitisation (ADS)

No data are available on humans.

Data waiving	
Information	Respiratory sensitisation
requirement	
Justification	Under Regulation (EC) No 1272/2008, in the absence of data, preparations may be classified for respiratory sensitisation by calculation. Section 3.4.3 of the Regulation states that classification of a product for sensitising effects is necessary if it contains at least one ingredient has been classified as a respiratory sensitiser and is present at or above the appropriate generic concentration limit as shown in Table 3.4.5 and for individuals who are already sensitised to the substance or mixture refer to Table 3.4.6. Details of the product composition are presented in Section 2. There are no components of the product classified for respiratory sensitisation. The product does not therefore require classification for respiratory sensitisation. A study is not required, nor considered an appropriate use of animals.

Conclusion used in F	Conclusion used in Risk Assessment – Respiratory sensitisation				
Value/conclusion	The product does not require classification for respiratory sensitisation according to Regulation (EC) No 1272/2008.				
	Note: study was conducted as required by the US EPA to support the registration at EPA.				
Justification for the value/conclusion	Refer to the table above.				
Classification of the product according to CLP and DSD	Not classified				

Acute toxicity

Acute toxicity by oral route

	Summary table of animal studies on acute oral toxicity						
Method Guideline GLP status, Reliability	Species, Strain, Sex, No/group	Test substance Dose levels Type of administra tion (gavage, in diet, other)	Signs of toxicity (nature, onset, duration, severity, reversibility)	Value LD50	Remarks (e.g. major deviations)	Refere nce	
EPA OPPTS 870.1100 (Acute Oral Toxicity); OECD Guideline 425 (Acute Oral Toxicity: Up- and-Down Procedure); GLP; Reliability 1	Rat, Sprague- Dawley, Female; limit test, 3 animals	5000 mg/kg bw in diet	There were no signs of toxicity. The only observation was reduced faecal volume.	>5000 mg/kg bw	None		

No data are available on humans.

Value used in the	Value used in the Risk Assessment – Acute oral toxicity				
Value	>5000 mg/kg bw				
Justification for the selected	Limit dose showed no signs of toxicity.				
value	Note: study was conducted as required by the US EPA to support the registration at EPA.				
Classification of	Not classified				
the product					
according to CLP and DSD					

Acute toxicity by inhalation

No data are available.

Value used in th	Value used in the Risk Assessment – Acute inhalation toxicity			
Value	The product does not require classification for acute inhalation toxicity according to Regulation (EC) No 1272/2008.			
Justification for the selected value	Based on the calculation method described in Annex I of Regulation 1272/2008/EC, no classification for acute inhalation toxicity is warranted for <i>Pesguard</i> [®] Gel. Furthermore, exposure to humans via inhalation is very unlikely given that the product is a gelatinous solid.			
Classification of the product according to CLP and DSD	Not classified			

Data waiving	
Information	-
requirement	
Justification	Based on the calculation method described in Annex I of Regulation 1272/2008/EC, no classification for acute inhalation toxicity is warranted for <i>Pesguard</i> [®] Gel. Furthermore, exposure to humans via inhalation is very unlikely given that the product is a gelatinous solid. A study on acute toxicity by inhalation is therefore not considered necessary.

Acute toxicity by dermal route

	Summary tab	le of animal st	udies on acut	e derma	al toxicity	
Method, Guideline, GLP status, Reliability	Species, strain, Sex, No/group	Test substance, Vehicle, Dose levels, Surface area	Signs of toxicity (nature, onset, duration, severity, reversibility)	LD50	Remarks (e.g. major deviations)	Refere nce
EPA OPPTS 870.1200 (Acute Dermal Toxicity); OECD Guideline 402 (Acute Dermal Toxicity); GLP; Reliability 1	Rat, Sprague- Dawley, Male/Female; limit test, 10 animals (5♂; 5♀)	5000 mg/kg bw limit test; test area 38 cm ²	There were no signs of toxicity. Irritation was noted for two dose sites on Day 1 and the animals all gained weight.	>5000 mg/kg bw	None	

No data are available on humans.

Value used in th	Value used in the Risk Assessment – Acute dermal toxicity				
Value	>5000 mg/kg bw				
Justification for the selected	Limit dose showed no signs of toxicity.				
value	Note: study was conducted as required by the US EPA to support the registration at EPA.				
Classification of the product according to CLP and DSD	Not classified				

Information on dermal absorption

Value(s) used in the	Value(s) used in the Risk Assessment – Dermal absorption					
Substance	Clothianidin	Pyriproxyfen				
Value(s)	50%	40%				
Justification for the selected value(s)	The value used is the default value used in the absence of data on dermal absorption for water-based formulations containing ≤5%.*	The value used is the default value used in the absence of data on dermal absorption for formulations containing ≤5% and that dermal absorption is not expected to exceed oral absorption.**				

*Dermal absorption value was changed during the commenting phase to 50%, default for water-based formulations containing \leq 5% EFSA Journal 2017;15(6):4873.

** Dermal absorption value for pyriproxyfen were selected in accordance with the EFSA Panel on Plant Protection Products and their Residues (PPR) Guidance on Dermal Absorption (EFSA Journal 2012;10(4):2665. [30 pp.])

Available toxicological data relating to non-active substance(s) (i.e. substance(s) of concern)

In line with CA document "CA-Nov14-Doc.5.11 - SoC guidance_final.doc", acetic acid is identified as a SoC as SCOEL values for this substance are available. The Scientific Committee on Occupational Exposure Limits (SCOEL, June 2012) has recommended an 8-hour TWA of 10 ppm (25 mg/m³) and STEL (15 min) of 20 ppm (50 mg/m³) for acetic acid.

Additionally, Substance potassium sorbate is included in the Union List (Regulation (EU) No 528/2012) for PT 8 and as the potassium sorbate is present >0.1 %, the substance complies with the triggers for substance of concern (add 2 of the SoCs guidance).

Exposure these identified SoCs is of no concern when using the product. For more detailed discussion, please be referred to the confidential annex of this PAR (section 3.6).

Available toxicological data relating to a mixture

Not applicable

Others

Endocrine disruption activity of active substances

For the active substances clothianidin and pyriproxyfen no ED assessment is required because for active substances which have been approved, the EU assessment should be followed. The Assessment Reports for clothianidin (2014) and pyriproxyfen (2012) both state that these active substances would not be considered as having endocrine disrupting properties.

Endocrine disruption activity of non-active substances

The Commission Delegated Regulation (EU) 2017/2100 specifying the scientific criteria for the determination of endocrine-disrupting properties (ED criteria) under Regulation (EU) No 528/2012 (BPR) establishes that the ED criteria become applicable by 7 June 2018 for biocides (<u>https://www.ctgb.nl/onderwerpen/hormoon-verstoorders</u>). According to the Endocrine disruption criteria a substance shall be considered as having endocrine disrupting properties if it meets all of the following criteria:

- a) it shows an adverse effect in [an intact organism or its progeny]/[non-target organisms], which is a change in the morphology, physiology, growth, development, reproduction or life span of an organism, system or (sub)population that results in an impairment of functional capacity, an impairment of the capacity to compensate for additional stress or an increase in susceptibility to other influences;
- b) it has an endocrine mode of action, i.e. it alters the function(s) of the endocrine system;
- c) the adverse effect is a consequence of the endocrine mode of action.

From this criteria ED screening was performed by CA NL.

For two co-formulants an ED alert was identified, however, for these co-formulant CA NL concludes that we have to await the discussions at EU level. See the confidential annex for more specific information.

In conclusion, based on available information, it is not possible to conclude whether the non-active substance should be considered to have ED properties before the expiration of the legal deadline in the BPR and therefore the process will be concluded at the post-authorisation stage. Once the conclusion regarding ED properties of these co-formulants is available, the applicant must inform the eCA. If needed, the conditions of authorization shall be revised.

2.2.6.2 Exposure assessment

Identification of main paths of human exposure towards active substance(s) and substances of concern from its use in biocidal product

	Summary table: relevant paths of human exposure									
	Primary ((direct) expo	osure	Secondary (indirect) exposure						
Exposure path	Industri al use	Profession al use	Non- profession al use	Industri al use	Profession al use	Gener al public	Via food			
Inhalation	n.a.	No	n.a.	n.a.	Negligible	Negligi ble	n.a.			
Dermal	n.a.	Yes	n.a.	n.a.	Negligible	Yes	n.a.			
Oral	n.a.	No	n.a.	n.a.	No	Yes (toddl er)	No			

List of scenarios

Summan	Summary table: scenarios						
Scena <i>r</i> io number	Scenario (e.g. mixing/ loading)	Primary or secondary exposure Description of scenario	Exposed group (e.g. professionals, non- professionals, bystanders)				
1.	Application	Primary exposure – dermal contact with product during application	Professional				
2.	Indirect exposure	Secondary exposure – oral exposure to a bead of product due to hand-to-mouth transfer (infants and toddlers only)					

Pesguard[®] *Gel* containing 0.05 g/kg clothianidin and 0.05 g/kg pyriproxyfen is intended to be used as bait for the control of cockroaches. The formulation is a gel commercialised in a ready to use container for use with bait applicator gun common to the pest control industry.

Industrial exposure

Not Applicable.

Professional exposure

Pesquard[®] Gel may be used as a spot or crack and crevice treatment to control cockroaches in non-food/non-feed areas (i.e. rubbish rooms, lavatories, floor drains [to sewers], entries and vestibules, offices, locker rooms, machine rooms, boiler rooms, garages, mop closets and storage [after canning or bottling]). Food/feed areas (*i.e.* areas for receiving storage, packing (canning, bottling, wrapping, and boxing), storage of prepared edible waste, and enclosed processing systems [mills, dairies, edible oils, and syrups], serving areas). For Household Use (*i.e.* in closets, basements, attics, recreation rooms, living areas, kitchens, bathrooms, dining rooms, pantries, food storage shelving, waste receptacles, etc.). Domestic premises (*i.e.* food handling areas [i.e. for food processing, storage and preparation], food manufacturing premises, commercial kitchens, restaurants, food stores, supermarkets, retail outlets *etc.*). Public Buildings such as hotels, restaurants and other food handling establishments, hospitals, nursing homes, health care facilities, motels, hotels, schools, day care centres, correctional facilities, zoos, theatres, etc.). Commercial and Industrial premises (*i.e.* apartments, military installations, garages, laboratories, factories, warehouses, food processing and meat packing plants, food storage areas, shops, pet shops, workshops, aircraft, vehicles, railway stock, boats, ships, computer and electronic equipment facilities, sub-surface utility systems [steam/ electric/ gas/ data cable tunnels, drainage systems and sanitary sewers 1 that are not storm or runoff drainage systems, etc.).

The pre-filled plastic reservoir containing *Pesguard*[®] *Gel* is intended for use with a bait application gun common to the pest control industry. The cap is removed from the dispenser nozzle, the nozzle tip is placed on the surface to be treated and the plunger pushed down. Following application, the cap is replaced on the dispenser. Once the container is empty it is disposed of following the label instructions, no cleaning operations are necessary.

The bait will adhere to non-greasy or non-dusty surfaces and will remain pliable and palatable to roaches as long as it is visibly present. A visual inspection of bait placements is recommended 2-4 weeks after the initial treatment.

Description of Scenario 1

It is unlikely that significant amounts of *Pesguard*[®] *Gel* will come into contact with the professional applicator. The risk of inhaling volatilised clothianidin or pyriproxyfen is assumed to be negligible considering the low vapour pressure of both clothianidin and pyriproxyfen (1.3×10^{-10} Pa at 25°C and $<1.33 \times 10^{-5}$ Pa at 22.81°C). Thus, levels of inhalation and dermal exposure to clothianidin and pyriproxyfen for professional applicators under these conditions are expected to be very low or even negligible. However, as a precautionary approach a reverse reference scenario can be used.

The margin of safety has been calculated taking into account the AEL and dermal absorption.

Exposure is assumed to result from dermal contact with the product. The product may be applied throughout the working week, and as cockroaches are not appearing seasonal, the professional exposure needs to be compared to the AEL_{long-term}.

Given the sensitising potential of *Pesguard*[®] *Gel*, impermeable gloves should be worn when handling and using the product application equipment.

	Parameters	Value
Tier 1	Application Concentration	Clothianidin: 0.5% Pyriproxyfen: 0.5%
	Dermal absorption	Clothianidin: 50% Pyriproxyfen: 40%
	Oral absorption	Clothianidin: 100% Pyriproxyfen: 40%
	Body weight*	Adult: 60 kg
Tier 2	PPE: Protective gloves**	90%

* HEEG Opinion no. 17: Default human factor values for use in exposure assessments for biocidal products.
 ** HEEG Opinion no. 9. Default protection factors for protective clothing and gloves. TM I 2010, Ispra 27/01/2010

Calculations for Scenario 1

Tier 1 (No PPE)

Clothianidin

With a default dermal absorption of 50%, the amount of product which could be present on the unprotected skin to reach the long-term AEL of 0.1 mg/kg bw/d for Clothianidin can be calculated as follows:

AEL (mg/kg/d)	x	adult body weight (kg)	÷	dermal penetration %	÷	concentration in bait %	=	mg
0.1		60		50		0.5		2400

The applicant indicates that a 4 mm bead could weigh 0.032 g or 32 mg. The bead would thus be:

32/4 = 8 mg/mm.

The 2400 mg on unprotected skin required to reach the AEL could thus be a bead of

2400/8 = 300 mm (30 cm) spread on the skin.

Pyriproxyfen

With a dermal absorption of 40%, the amount of product which could be present on the unprotected skin to reach the AEL of 0.04 mg/kg bw/d of Pyriproxyfen can be calculated as follows:

AEL (mg/kg/d)	x	adult body weight (kg)	÷	dermal penetration %	÷	concentration in bait %	=	mg
0.04		60		40		0.5		1200

The applicant indicates that a 4 mm bead could weigh 0.032 g or 32 mg. The bead would thus be:

32/4 = 8 mg/mm.

The 1200 mg on unprotected skin required to reach the AEL could thus be a bead of 1200/8 = 150 mm (15 cm) spread on the skin.

Estimates of professional exposure without the use of PPE are considered to be protectively low. However, since *Pesguard*[®] *Gel* is classified as a skin sensitiser an exposure assessment assuming PPE is worn has been carried out.

Tier 2 (With PPE [gloves])

Clothianidin

Given the dermal sensitisation hazard of *Pesguard*[®] *Gel*, suitable protective gloves should be worn when handling the product application equipment. If it is considered that the penetration of Clothianidin through protective gloves is 10%, the operator would need to get **24000 mg** (or 24 g) of biocidal product on the outside of the gloves and this would need to remain on the surface until the active had migrated through the gel and penetrated the glove.

This would mean a bead of 3000 mm (300 cm) would be required spread on the outer surface of the gloves to reach the AEL.

Pyriproxyfen

Given the dermal sensitisation hazard of *Pesguard*[®] *Gel*, suitable protective gloves should be worn when handling the product application equipment. If it is considered that the penetration of Pyriproxyfen through protective gloves is 10%, the operator would need to get **12000 mg** (or 12 g) of biocidal product on the outside of the gloves and this would need to remain on the surface until the active had migrated through the gel and penetrated the glove.

This would mean a bead of 1500 mm (150 cm) would be required spread on the outer surface of the gloves to reach the AEL.

Non-professional exposure

Pesguard[®] *Gel* is not for use by non-professionals.

Exposure of the general public

<u>Scenario 2</u>

Description of Scenario 2

As an infant or toddler could be exposed by poking their fingertips into treated areas (i.e. cracks, crevices) followed by oral intake, exposure via hand-to-mouth transfer cannot fully be excluded. Therefore, a reverse reference scenario is included for accidental exposure. In a very worst-case exposure scenario for hand-to-mouth exposure, as an infant (6 monts-1 year old) picks up a bead of product, and the full amount of the product is orally absorption (i.e. 100% oral absorption. Considering the lower dermal absorption values (i.e. 50% for clothianidin 40% for pyriproxyfen), dermal exposure by dermal contact or via hand-to-mouth behaviour, which consists of 90% dermal exposure and 10% of the dermal exposure considered for oral exposure, is therefore covered by this scenario for all age groups.

The risk of inhaling dried residues of clothianidin or pyriproxyfen is considered to be negligible considering the low vapour pressure of clothianidin and pyriproxyfen (1.3 \times 10⁻¹⁰ Pa at 25°C and <1.33 \times 10⁻⁵ Pa at 22.81°C, respectively). The nature of the product composition (adherent gel) and its high moisture content also contributes to maintain the product pliable and not drying out too quickly.

The risk of an infant and a toddler is assessed using a reverse reference approach, to assess how may beads of product could be orally exposed to before exceeding the AELshort-term. One bead of product is 32 mg.

	Parameters	Value
Tier 1	Concentration active per bead of 32 g product	Clothianidin: 0.16 mg Pyriproxyfen: 0.16 mg
	Oral absorption	Clothianidin: 100% Pyriproxyfen: 40%
	Body weight*	Infant: 8 kg Toddler: 10 kg

* HEEG Opinion: Default human factor values for use in exposure assessments for biocidal products.

Calculations for Scenario 2

Summary table: systemic exposure from non-professional uses							
-	Clothi	anidin	Pyriproxyfen				
Exposure descriptor	Infant	Toddler	Infant	Toddler			
Maximal systemic exposure via oral route (AEL short-term)	0.25 mg/l	kg bw/day	0.12 mg/kg bw/day				
Maximal intake dose (mg) AEL x bw x correction factor oral absorption	0.25 x 8 x 1 = 2 mg 2.5 mg		0.12 × 8 x 2.5 = 2.4 mg	0.12 × 10 x 2.5 = 3 mg			

Concentration active in one bead	32 mg x 0.5% = 0.16 mg		32 mg x 0.59	% = 0.16 mg
Number of beads of product that can be consumed before exceeding the AEL short- term:	2/0.16 = 12.5	2.5/0.16 = 15.6	2.4/0.16 = 15	3/0.16 = 18.8

Further information and considerations on scenario 1

No further information or considerations are required for this scenario as estimated levels of exposure using precautionary assumptions demonstrate acceptable margins of safety for clothianidin and pyriproxyfen.

Combined scenarios

The product contains two active substances, the combined effect should be considered. As the exposure scenarios are both based on reverse reference calculations, they cannot be evaluated by summing up the risk indices (as would be in accordance with mixture toxicity evaluation as included in BPR guidance).

However, based on the reverse reference calculation for the protected (gloves, due to sensitising properties of product) professional user can be exposure to 12 g - 24 g (pyriproxyfen and clothianidin, respectively) of product on the outside of the gloves and this would need to remain on the surface until the actives had migrated through the paste and penetrated the glove.

As the included photograph (Figure 2.2.6.3/01) representing 4 g of a paste product shows quit a lot of product, it is considered that a professional operator would be unlikely to get this amount of a paste formulation on their gloves during the application of the gel bait by dispensing gun. Therefore, it is concluded that no adverse effects are expected to the combined exposure to both actives substances when applying *Pesguard*[®] Gel.

Based on the reverse reference scenario for infant and toddlers. Considering the worstcase outcome of the assessment (for infants), an infant can consume 12.5 - 15 (clothianidin and pyriproxyfen, respectively) beads of product before exceeding the AELshort-term. Considering the intended use, The product is applied by injecting the bait into cracks and crevices, void spaces and other locations where insects may live, feed and breed, exposure of the entire surface area of the hand is considered unlikely. Such areas are generally warm/damp and dark (e.g. behind or under furniture or equipment) and not easily accessible. Furthermore, in the intended use is indicated that product should only be applied to areas inaccessible to children and pets. Considering the outcome of the calculations and the intended use, no adverse effects are expected after the combined exposure to both active substances for infants or toddlers by indirect exposure due to use of *Pesguard*[®] Gel.

Monitoring data

Not required as estimated levels of exposure using precautionary assumptions demonstrate acceptable margin of safety for clothianidin and pyriproxyfen.

Dietary exposure

No food, drinking water or livestock exposure is foreseen as the product should not be applied to areas where food utensils or food preparation surfaces may become contaminated and should only be applied to areas inaccessible to pets. The following sentences are included in the instruction of use:

- Ensure that any alternative food sources are removed and concentrate the bait placements as individual spots at cockroach activity sites (only in areas inaccessible to children and pets).
- Do not apply directly on or near food, feed or drinks, or on surfaces or utensils likely to be in direct contact with food, feed, drinks and animals. Moreover, the following sentences are included in the risk mitigation measures:

Considering these instructions and risk mitigation measures, dietary exposure is foreseen to be negligible.

Estimating transfer of biocidal active substances into foods as a result of professional and/or industrial application(s)

No food or livestock exposure is foreseen as the product should not be applied to areas where food utensils or food preparation surfaces may become contaminated and should only be applied to areas inaccessible to pets.

Estimating transfer of biocidal active substances into foods as a result of nonprofessional use

Pesguard[®] *Gel* is not for use by non-professionals.

Exposure associated with production, formulation and disposal of the biocidal product

Production and formulation are addressed under other EU legislation (*e.g.* Directive 98/24/EC) and not repeated under Regulation 528/2012 (this principle was agreed at Biocides Technical Meeting TMI06).

As the product is applied directly from the container and disposed of once empty, there is no cleaning operation to consider.

Aggregated exposure

Not applicable.

2.2.6.3 Risk characterisation for human health

Reference values to be used in Risk Characterisation of clothianidin

Reference	Study	NOAEL (LOAEL)	AF ¹	Correction for oral absorption	Value
Professiona	luser				
OEL	-	-	-	-	-
Non- profess	sional user				
AEL _{short-term}	Pharmacology study, mouse	25 mg/kg	100	n.a.	0.25 mg/kg bw
AEL _{medium-term}	90-day dog, supported by 90-day rat and embryotoxicity rabbit	20 mg/kg bw/day	100	n.a.	0.2 mg/kg bw/day
AEL _{long-term}	2-year rat, supported by 2-	9.7 mg/kg bw/day	100	n.a.	0.1 mg/kg bw/day

	gen. rat				
ARfD*	Pharmacology study, mouse	25 mg/kg	100	n.a.	0.25 mg/kg bw
ADI*	2-year rat, supported by 2- gen. rat	9.7 mg/kg bw/day	100	n.a.	0.1 mg/kg bw/day

 $^{\rm 1}$ Please explain background and reason for assessment factor.

* The ADI an ARfD are not relevant for this product risk characterisation, as no product residues are expected in food or feed.

Reference values to be used in Risk Characterisation of pyriproxyfen

Reference	Study	NOAEL (LOAEL)	AF ¹	Correction for oral absorption	Value						
Professional user											
AELmedium/long- term	1-yeardog	10 mg/kg bw/day	100	40%	0.04 mg/kg bw/day						
AEL _{short-term}	28-day rat	30 mg/kg bw/day	100	40%	0.12 mg/kg bw						
Non- profess	sional user										
AEL _{secondary} exposure	1-yeardog	10 mg/kg bw/day	100	40%	0.04 mg/kg bw/day						
AELmedium/long- term	-	-	-	-	-						
ARfD	_	-	-	-	_						
ADI	-	-	-	-	-						

¹ Please explain background and reason for assessment factor.

Risk for industrial users

Not applicable.

Risk for professional users

The risk associated with direct use of the product *Pesguard*[®] Gel is considered to be very low or even negligible. Given the dermal sensitisation hazard of *Pesguard*[®] *Gel* professional users are required to wear suitable protective gloves when handling the product.

However, as a precautionary approach using a reverse reference scenario and considering an operator wearing gloves, it was demonstrated that a bead of 3000 mm of clothianidin or 1500 mm pyriproxyfen spread on the gloves could lead to predicted exposure at the AEL, which although applicator guns can be messy tools, is unlikely for a trained professional operator following good hygiene practice.

If it is considered that the penetration of clothianidin and pyriproxyfen through protective gloves is 10%, the operator would need to get about 12 g - 24 g (pyriproxyfen and clothianidin, respectively) of product on the outside of the gloves and this would need to remain on the surface until the actives had migrated through the paste and penetrated the glove.

The following photograph represents what 4 g of a paste product looks like (using toothpaste as the representative product).

Figure 2.2.6.3/01

This appears to be quite a lot of product and it is considered that a professional operator would be unlikely to get this amount of a paste formulation on their gloves during the application of the gel bait.

Risk characterisation from combined exposure to several active substances or substances of concern within a biocidal product

As the only scenario considered to result in exposure to professional users has been estimated using a reverse reference calculation no combined exposure assessment is possible. However, given the large MoS presented for Scenario 1 it is considered that combined exposure presents a very low risk with large MoS to the adult.

Risk for non-professional users

Pesguard[®] *Gel* is not for use by non-professionals.

Risk for the general public

Pesguard[®] *Gel* is applied by injecting the bait into cracks and crevices, void spaces and other locations where insects may live, feed and breed. Such areas are generally warm/damp and dark (e.g. behind or under furniture or equipment) The product should only be applied to areas inaccessible to children and pets. However, as an infant or toddler could be exposed by poking their fingertips into treated areas (i.e. cracks, crevices) followed by oral intake, exposure via hand-to-mouth transfer cannot fully be excluded. Therefore, a reverse reference scenario is included for accidental exposure. In a very worst-case exposure scenario for hand-to-mouth exposure, as an infant (6 monts-1 year old) picks up a bead of product, and the full amount of the product is orally absorption (i.e. 100% oral absorption. Considering the lower dermal absorption values (i.e. 50% for clothianidin 40% for pyriproxyfen), dermal exposure by dermal contact or via hand-to-mouth behaviour, which consists of 90% dermal exposure and 10% of the dermal exposure considered for oral exposure, is therefore covered by this scenario for all age groups.

The risk of inhaling dried residues of clothianidin or pyriproxyfen is assumed to be negligible considering the low vapour pressure of clothianidin and pyriproxyfen (1.3 \times 10⁻¹⁰ Pa at 25°C and <1.33 \times 10⁻⁵ Pa at 22.81°C, respectively). The nature of the product composition (adherent gel) and its highly moisture content also contribute to maintain the product pliable and not drying out too quickly.

The risk of an infant and a toddler is assessed using a reverse reference approach, to assess how may beads of product could be orally exposed to before exceeding the AELshort-term.

Task/ Scenario	Tier	Systemic NOAEL mg/kg bw/d	AEL mg/kg bw/d	Margin of Safety	Acceptable (yes/no)					
Clothianidi	<u>1</u>									
Scenario 2 (Infant)	1	9.7	0.1	Number of beads of product that can be consumed before exceeding the AEL short-term: 12.5	Yes					
Scenario 2 (toddler)	1	9.7	0.1	Number of beads of product that can be consumed before exceeding the AEL short-term: 15.6	Yes					
Pyriproxyfe	Pyriproxyfen									
Scenario 2 (Infant)	1	10	0.04 Number of beads of product that can be consumed before exceeding the AEL short-term: 15		Yes					
Scenario 2 (toddler)	1	10	0.04	Number of beads of product that can be consumed before exceeding the AEL short-term: 18.8	Yes					

Systemic effects

Local Effects

The product is classified as sensitising (H317: May cause an allergic skin reaction). Therefore, risk characterisation for local effects is presented in the table below.

The Netherlands

Pesguard® Gel

PT18

Local effects

	Hazard					Exp	osure			Risk
Hazard Category	Effects in terms of C&L	Additional relevant hazard information	РТ	Who is exposed?	Tasks, uses, processes	Potential exposure route	Frequency and duration of potential exposure	Potential degree of exposure	Relevant RMM &PPE	Conclusion on risk
Primary exposure										
High	H317-Skin sensitisation		18	Professional user	Applying and inspecting (visually) the baits	Skin	When applying the product Frequency: 1 time every 1-2 week, Duration: few minutes, Recommended application rate (number of 4mm diameter spots (approximately 0.032g of bait) per m2) is dependent on infestation level: 1-2 spots per m2 for light, 3-6 spots per m2 for medium and 6-10 spots per m2 for heavy infestation.	Exposure below or similar to brief contact with RMM and PPE.	All measures to eliminate exposure as much as possible, such as: Personal protective equipment: Gloves The following P- statements are included in the label: P280: Wear protective gloves P302+P352 IF ON SKIN: Wash with plenty of water/ P333+313: If skin irritation or rash occurs: Get medical advice/attention Packaging minimising risk for exposure: syringe with	Acceptable: Negligible exposure P-statements related to H317 on the label

Pesguard[®] Gel

PT18

									plunger	
Secondary e	exposure	I			I	<u> </u>	<u> </u>	<u> </u>		
High	H317-Skin sensitisation	-	18	General public	N/A	Skin	Touching treated surfaces or via hand-to- mouth transfer (infant or toddler)	Exposure below or similar to an infant or toddler exposed by poking their fingertips into treated areas (i.e. cracks, crevices) followed by oral intake through hand-to- mouth transfer	All measures to eliminate exposure as much as possible, such as: Labelling, instructions for use: *Do not apply bait to areas where food utensils or food preparation surfaces may become contaminated. *Care should be taken to avoid depositing gel onto exposed surfaces. If gel contacts an exposed surface, rem ove gel and wash exposed surfaces. *Do not place treatments in locations where routine cleansing operations may transfer diluted bait to food or food preparation surfaces. *Do not treat food preparation surfaces.	Acceptable: Negligible exposure Labelling, instructions for use: *Bait should be inaccessible or removed from exposed surfaces

Conclusion

The AEL is neither reached nor exceeded by the estimated exposures. The local risk is considered acceptable in the view of negligible exposure. *Pesguard*[®] *Gel* application demonstrates acceptable margins of safety (MoS).

Risk for consumers via residues in food

No food, drinking water or livestock exposure is foreseen as the product should not be applied to areas where food utensils or food preparation surfaces may become contaminated and should only be applied to areas inaccessible to pets.

Risk characterisation from combined exposure to several active substances or substances of concern within a biocidal product

The product contains two active substances, the combined effect should be considered. As the exposure scenarios are both based on reverse reference calculations, they cannot be evaluation by summing up the risk indices (as would be in accordance to mixture toxicity evaluation as included in BPR guidance).

However, based on the reverse reference calculation for the protected (gloves, due to sensitising properties of product) professional user can be exposure to 12 g - 24 g (pyriproxyfen and clothianidin, respectively) of product on the outside of the gloves and this would need to remain on the surface until the actives had migrated through the paste and penetrated the glove.

As the included photograph (Figure 2.2.6.3/01) representing 4 g of a paste product shows, and considering that the product is applied by dispensing gun and while wearing gloves, it is concluded that no adverse effects are expected to the combined exposure to both actives substances when applying *Pesguard*[®] Gel.

Based on the reverse reference scenario for infant and toddlers. Considering the worstcase outcome of the assessment (for infants), an infant can consume 12.5 - 15 (clothianidin and pyriproxyfen, respectively) beads of product before exceeding the AELshort-term. The product is applied by injecting the bait into cracks and crevices, void spaces and other locations where insects may live, feed and breed, exposure of the entire surface area of the hand is considered unlikely. Such areas are generally warm/damp and dark (e.g. behind or under furniture or equipment) and not easily accessible. Furthermore, in the intended use is indicated that product should only be applied to areas inaccessible to children and pets. Considering the outcome of the calculations and the intended use, no adverse effects are expected after the combined exposure to both active substances for infants or toddlers by indirect exposure due to use of *Pesguard*[®] Gel.

2.2.7 Risk assessment for animal health

No food or livestock exposure is foreseen as the product is not intended to be applied to areas where food utensils or food preparation surfaces may become contaminated and should only be applied to areas inaccessible to pets.

2.2.8 Risk assessment for the environment

Pesguard[®] *Gel* (containing 0.5% w/w clothianidin and 0.5% w/w pyriproxyfen) is a ready to use gel product for the control of cockroaches. Spots of gel bait are injected into cracks and crevices where the insects may live. Each spot consists of approximately 0.032 g bait and 1-2 spots per m² are applied for maintenance treatments up to a maximum of 6-10 spots per m² for heavy infestations.

Both clothianidin and pyriproxyfen have been assessed under the EU Review programme and details of the evaluations are included in the respective Assessment Reports^{1,2}. A new study (**Construction**) was submitted in which the biodegradation

¹ Assessment Report – Clothianidin, Product Type 18 (Insecticides, Acaricides and Products to control other Arthropods), June 2014

of [¹⁴C]-pyriproxyfen under aerobic conditions in activated sludge was determined according to OECD 314B. This study is not included in the Assessment Report of pyriproxyfen (2012). The study is considered reliable and the results of the study are used in the exposure assessment performed for Pesguard Gel.

No other new data are submitted over and above those evaluated under the EU reviews for the active substances.

The uses evaluated in the Assessment Reports differ to those proposed for *Pesguard® Gel*. Although both clothianidin and pyriproxyfen were evaluated as PT18, use in animal houses was considered; therefore, a new environmental risk assessment has been performed for the proposed use.

² Assessment Report – Pyriproxyfen, Product type 18 (Insecticides, acaricides and products to control other arthropods), 21 September 2012

2.2.8.1 Effects assessment on the environment

Information relating to the ecotoxicity of the biocidal product which is sufficient to enable a decision to be made concerning the classification of the product is required

The PNECs agreed for clothianidin and pyriproxyfen under their EU reviews and detailed in their respective Assessment Reports are presented in Table 2.2.8.1-1. No further ecotoxicology data are submitted.

PNEC	Clothianidin (from AR, 2014)	Pyriproxyfen (from AR, 2012)
PNEC _{STP}	100 mg a.s./L	10 mg a.s./L
PNECaquatic, freshwater	0.08 µg a.s./L	3 ng a.s./L (continuous exposure)
PNEC _{sediment} , freshwater	0.34 µg a.s./kg wwt	1.4 µg a.s./kg wwt
PNEC _{terrestrial}	1.8 µg a.s./kg wwt	1.1 µg a.s./kg wwt
PNECoral, birds	_*	19 mg a.s./kg diet
PNECoral, mammals	_ *	6.7 mg a.s./kg diet
PNEC _{Bee}	14.6 µg a.s./kg nectar/pollen**	***

Table 2.2.8.1-1: Agreed PNECs for clothianidin and pyriproxyfen

*The log Kow of clothianidin is low (<1) with low estimated BCFs in fish (0.78 L/kg) and earthworms (0.9 L/kg). The risk of bioaccumulation was therefore assessed as low in the Assessment Report and a quantitative assessment was not performed. The change in use pattern does not alter this conclusion.

** Clothianidin has shown to be highly toxic to Bees both by oral and contact exposure. The 48-hour LD50 for oral toxicity was 0.0038 μ g/Bee. Currently, there is no assessment concept available how to derive a PNEC for Bees. As clothianidin is a systemic insecticide, it is taken up from soil by plants and exposure to Bees via nectar and pollen is possible. Therefore, as a first step, the effect value has to be recalculated into a concentration in pollen/nectar. The data from the oral exposure test can be transformed to mg a.s./kg nectar/pollen using the information given in the publication included in . There, it is stated that a dose of 0.016 μ g a.s./Bee is equivalent to 615 μ g a.s./kg sucrose solution. From this it can be concluded that the LD50 of 0.0038 μ g a.s./Bee was equivalent to 146 μ g a.s./kg sucrose = 146 μ g a.s./kg nectar/pollen.

As a first approach, an assessment factor of 10 is applied to derive the PNEC $_{\text{Bee}}$, resulting in a PNEC $_{\text{Bee}}$ of 14.6 μ g a.s./kg nectar/pollen.

*** Exposure of Bees and other beneficial arthropods is considered insignificant. Therefore, a PNECadd, terrestrial was not calculated in the Assessment Report of pyriproxyfen.

A number of metabolites were considered relevant in both the soil and aquatic metabolism studies with clothianidin and pyriproxyfen. For clothianidin the metabolites MNG and TZNG were detected in soil metabolism studies at respective maxima of 10.7% and 9.1% AR and the metabolite TMG was detected in sediment in the sediment/water study at a maximum of 22.9% AR.

No risk characterisation is performed for the metabolites of clothianidin as their ecotoxicity was found to be far below the effect value of the parent (please refer to Table 2.2.8.1-2 for the PNECs of the metabolites).

For pyriproxyfen the metabolites 4-OH-Pyr (water 4.8% AR, sediment 14.8% AR), PYPAC (water 23.6% AR, sediment 7.6% AR) and DPH-Pyr (water 11.8% AR, sediment 4.3% AR) were detected in the sediment/water study. The metabolites 4-OH-Pyr and PYPAC were also detected in the soil metabolism study at respective maxima of 6.3% AR and 8.6% AR.

The relevant ecotoxicological metabolites of pyriproxyfen in water are 4-OH-Pyr, PYPAC and DPH-Pyr.

4'-OH-Pyriproxyfen was the only major (>10%) metabolite in sediment. No toxicity data for this metabolite are available, for the risk it is assumed that 4'-OH-Pyriproxyfen has the same characteristics as the parent. For that matter a combined assessment was performed using a combined degradation rate in the STP resulting in combined PECs for the receiving compartments. In laboratory incubated soil, the maximum level of the main degradation product PYPAC in any of the investigated soils exceeded 5% AR at two consecutive time points in soil.

The PNECs for the metabolites of clothianidin and pyriproxyfen are given in Table 2.2.8.1-2.

PNEC	Metabolites of Clothianidin (from AR, 2014)					
	MNG (soil)	TZNG (soil)	TMG (sediment)			
PNEC _{freshwater}	0.100 mg/L*	0.057 mg/L*	0.05 mg/L*			
PNECsediment	0.124 mg/kg wwt**	0.387 mg/kg wwt**	0.34 µg/kg wwt‡			
PNECterrestrial	0.0042 mg a.s./kg wwt ⁺	0.0083 mg a.s./kg wwt ⁺	1.8 µg/kg wwt ⁺⁺			
PNEC	Ме	tabolites of Pyripr	oxyfen			
		(from AR, 2012)			
	4-OH-Pyr***	ΡΥΡΑϹ	DPH-Pyr			
PNECaquatic, freshwater	0.27 μg/L	30 µg/L	5.1 μg/L			
PNECsediment, freshwater	0.015 mg/kg wwt	-	-			
PNECterrestrial	-	14.5 µg/kg wwt	114 µg/kg wwt			

 Table 2.2.8.1-2: PNECs for the metabolites of clothianidin and pyriproxyfen

*PNECs not calculated in AR, so calculated using AF of 1000 and acute endpoints in AR for acute studies with fish, Daphnia and algae for each metabolite

** PNECs in sediment and terrestrial not detailed in the AR. PNECs have therefore been calculated using the equilibrium partitioning method and assuming Koc-values for MNG of 21 mL/g, TZNG of 276 mL/g, PYPAC of 20.7 mL/g and DPH-Pyr of 1110 ml/g.

*** These PNECs were not used. For the risk assessment pyriproxyfen and 4-OH-Pyr was combined

‡PNEC not given in AR. *Chironomus* endpoint is from a spiked water study and no Koc for TMG is available. Therefore worst-case assumption of equivalent toxicity to the parent was made.

⁺PNEC not given in AR. Calculated based on data summarised in CAR using AF of 50 (2 long-term end-points, earthworms and soil micro-organisms)

⁺⁺In AR PNEC for clothianidin is considered to apply

Endocrine disruption (ED) activity of non-active substances (ENV)

The toxicological endocrine disruption assessment with respect to human health is presented in the <u>ED section</u> of human toxicology. This section describes the ED screening for environmentally related issues (see below).

As also discussed in Section 2.2.6.1 (Endocrine disruption activity of non-active substances) ED criteria became applicable by 7 June 2018 for biocides (<u>https://www.ctgb.nl/onderwerpen/hormoon-verstoorders</u>). The product *Pesguard*[®] *Gel* contains the active substances clothianidin and pyriproxyfen, as well as various co-formulants. For the active substances clothianidin and pyriproxyfen no ED assessment is required because for active substances which have been approved, the EU assessment should be followed. The Assessment Reports for clothianidin (2014) and pyriproxyfen (2012) both state that these active substances would not be considered as having endocrine disrupting properties.

There are indications of endocrine disruption for two co-formulants (see Section 2.2.6.1). For these co-formulants CA NL concludes to await the discussions at EU level. See the confidential annex for more specific information.

Secondary ecological effect e.g. when a large proportion of a specific habitat type is treated (ADS)

Not relevant.

Foreseeable routes of entry into the environment on the basis of the use envisaged

The product is intended for use indoors therefore there will be no direct exposure of the environment. However, according to the ESD for PT18 there could be exposure of the STP via waste-water after wet washing of the treated area and subsequent exposure of surface water and agricultural land after spreading of sewage sludge.

Further studies on fate and behaviour in the environment (ADS)

Summary table on further studies on fate and behaviour in the environment								
Method, Guideline, GLP status, Reliability	Compartment	Duration	Temp [°C]	concentra- tion	Half- life, DT ₅₀ [d]	Re- marks	Re- ference	
OECD Method 314B, GLP, reliability 1	Activated Sludge	28 days	22 ± 2°C in the dark	0.01 mg/L solution of [pyridyl- 2,6- ¹⁴ C] pyriproxyfen	0.0529 days in biotic sludge 149 days in abiotic sludge	See below	IUCLID 10.2	

Conclusion used in the environment	Risk Assessment – Further studies on fate and behaviour in
Value/conclusion	[pyridyl-2,6- ¹⁴ C]Pyriproxyfen in the biotic sludge system underwent primary biodegradation to ten transformation products and a polar region and underwent significant ultimate biodegradation (conversion to ¹⁴ CO ₂) by 63.1% AR over the course of the 28-day study. The overall material balance averaged 95.0% AR in the biotic and 111.9% AR in the abiotic solution. No significant degradation occurred in the abiotic sludge. The calculated half-life of the parent [pyridyl-2,6- ¹⁴ C]pyriproxyfen was determined to be approximately 0.0529 days in the biotic sludge and 149 days in the abiotic sludge.
Justification for the value/conclusion	The biodegradation of [pyridyl-2,6 ⁻¹⁴ C]pyriproxyfen was studied at a concentration of approximately 0.01 mg/L and a temperature of $22 \pm 2^{\circ}$ C for 28 days in activated sludge. Activated sludge samples were analyzed at time zero, and 0.167 (4 hours), 1, 2, 3, 7, 14, 21 and 28 days after dosing to determine primary and ultimate biodegradation. At each sampling interval, the aqueous sludge samples were extracted and analyzed by liquid scintillation counting (LSC) and high performance liquid chromatography with radiochemical detection (HPLC/RAM) to evaluate primary degradation. Analysis of 14CO2 trapping solutions was made to evaluate ultimate biodegradation. Dissolved organic carbon (DOC) measurements were also made to evaluate ultimate biodegradation of the reference substance.
	 [pyridyl-2,6-¹⁴C]Pyriproxyfen underwent both primary and ultimate biodegradation over the course of the 28-day study. Mass balance of the biotic sludge system ranged from 88.5 to 100.9% of the applied radioactivity (% AR). Mass balance of the abiotic sludge system ranged from 104.3 to 116.6% AR. Ultimate biodegradation (conversion to CO2) occurred at 63.1 and 1.1% AR in the biotic and abiotic activated sludge test solutions, respectively. Three regions of radioactivity and a polar region were observed in the HPLC analyses of the biotic sludge in addition to the parent peak and are summarized in the table below. No single peak >10% AR was measured in the region marked as 'others'. No single peak was greater than 8% AR in the polar region of the representative samples (Day 1 and 14) by the HPLC analysis using a Hydro-RP column for the separation of small polar molecules.

Sample	,	% Degra	dation in the Biotic	Sludge Solution (%	of AR)	
Day	Pyriproxyfen	Polars	PYPAC	DPH-Pyr	4'-OH-Pyr	Others*
0	92.7	ND	ND	ND	ND	ND
0.167	10.4	8	8	5.9	22.9	31.8
1	2.5	19.6	4.8	8.1	4.7	36.3
3	ND	18.7	ND	4.3	5.4	28.8
7	1.5	32.9	ND	ND	2.2	11.1
14	ND	33.5	ND	ND	ND	8.8
21	ND	25.8	2.9	ND	2.9	7.7
28	ND	20.4	ND	ND	ND	17.3
* No single peak ≥	10% AR was measured in					11.5
ND = Not Detected	1 OF < 0.1 % A.K.					
Sample Day	Decision			iotic Sludge Solution		04
-	Pyriproxyfer		PAPAC	DPH-Pyr	4'-OH-Pyr	Others
0	116.5	ND	ND	ND	ND	ND
0.167	116.6	ND	ND	ND	ND	ND
1	114	ND	ND	ND	ND	ND
3	112.5	ND	ND	ND	ND	ND
7	112	ND	ND	ND	ND	ND
14	106	3.6	ND	ND	ND	1.7
21	103.6	ND	ND	ND	ND	1.2
28	103	ND	ND	ND	ND	ND
legradati lays in th elimination for the ab	value for th on occurrec e abiotic sh n rate cons iotic system	l in the at udge was tant, ke, n was det	oiotic sluc calculate was 0.00	lge. The h ed to be 14 467 days-	alf-life af 19 days. T 1. The DT	ter 28 The T90 value
values are	e presented	below:				
Tes	at Matrix	DT ₅₀ (Days)	DT ₉₀ (Days)	Rate Constant (k, day ⁻¹)	χ ²	\mathbf{r}^2
Biotic Ac	ctivated Sludge	0.0529	0.176	13.1	6.14	0.9992
	(sterile) Sludge	149	494	0.00467	0.947	0.9361
Abiotic (149	494	0.00467	0.947	
97.6% by (reaching degradati an accept The eCA h	Day 1, thu 70% or gre on of the re table microb	s exceed eater DOC ference s vial comm wing con	ing the "p depletic ubstance unity and nments:	n within 1 confirmed l confirme	ria of the 4 days). ⁻ 1 the pres d system	test This rap ence of integrit
97.6% by (reaching degradati an accept The eCA h The sludg conducted activated	70% or gre on of the re able microb	s exceed ater DOC ference s ial comm wing con lability te to the OE he results	ing the "p depletic ubstance unity and nments: est with ¹⁴ ECD314B	n within 1 confirmed l confirme C labelled guideline `	ria of the 4 days). ⁻ d the pres d system pyriproxy "Biodegra	test This rapi ence of integrity fen was dation ir

 The concentration of sludge was 3000 mg/L (24 g of dry weight solid equivalents in 8L) within the limits of 2500-4000 mg/L subscribed in OECD 314B guidance. More measurements the first day and direct after addition of the test substance are recommended for rapid degrading compounds. One metabolite, 4'-OH-Pyr, is above the 10% Good recoveries were obtained, average 95.0% AR and 111.9% AR for the biotic and abiotic test. Degradation rate constant was determined with software CAKE and the DT50 of 0.0529 day was obtained via SFO fit for the biotic test.
the DT 50 of 0.0529 day was obtained via SFO fit for the biotic test. Very fast degradation was best fitted with an SFO fit.
A combined degradation rate and DT 50 for pyriproxyfen and 4-OH-Pyr was derived and set at 0.107/h at 20°C (DT $_{50}$ is 0.27 d)

Leaching behaviour (ADS)

Leaching tests are not relevant to the proposed use under PT18.

Testing for distribution and dissipation in soil (ADS)

No further data on distribution and dissipation in soil are submitted.

Testing for distribution and dissipation in water and sediment (ADS)

No further data on distribution and dissipation in water and sediment are submitted.

Testing for distribution and dissipation in air (ADS)

No further data on distribution and dissipation in air are submitted.

If the biocidal product is to be sprayed near to surface waters then an overspray study may be required to assess risks to aquatic organisms or plants under field conditions (ADS)

Not relevant.

If the biocidal product is to be sprayed outside or if potential for large scale formation of dust is given, then data on overspray behaviour may be required to assess risks to bees and non-target arthropods under field conditions (ADS)

The product is not intended to be sprayed outside and a large scale formation of dust will not occur. Clothianidin is, however, a neonicotinoid and therefore potential exposure of Bees has been considered via the soil route. Emission to soil is included due to STP-sludge application.

As clothianidin is a systemic insecticide, it is taken up from soil by plants and exposure to Bees via nectar and pollen is possible, as stated in the Assessment Report for

PT18

Clothianidin³. There is currently no harmonized scenario available and therefore the assessment has been based on a comparison of the $PNEC_{Bee}$ and the highest PEC_{soil} . As a worst-case approach, it was assumed that the concentration in nectar and pollen is equivalent to the concentration in soil, i.e. a 100% uptake of clothianidin from soil by plants and a 100% transfer in nectar and pollen occurs.

2.2.8.2 Exposure assessment

General information	
Assessed PT	PT 18
Assessed scenarios	Crack and crevice treatment – heavy infestation (worst-case)
ESD(s) used	OECD emission scenario document (ESD) for insecticides, acaricides and products to control other arthropods for household and professional uses, 17 July 2008 Technical Agreements for Biocides. European Chemicals Agency, Report no. ECHA-17-R-19-EN, Helsinki, Finland, August 2017.
Approach	Exposure calculated using the worst-case assumption for heavy infestation, i.e. 10 spots per m ² , each spot comprising of approximately 0.032 g bait.
Distribution in the	Calculated based on Guidance for BPR IV/B (2017) and
environment	SimpleTreat 4.0 with 3.1 setting
Groundwater simulation	None performed as PEC _{porewater} calculated using the equilibrium partitioning method and guidance from AHEE 2019 metabolites in groundwater are <0.1 µg/L
Confidential Annexes	No
Life cycle steps assessed	Production: No Formulation No Use: Yes Service life: No
Remarks	None

General information

³ Assessment Report – Clothianidin, Product Type 18 (Insecticides, Acaricides and Products to control other Arthropods), October 2014

Emission estimation

Worst-case assessment for crack and crevice treatment (heavy infestation)

Input parameters for calculating the local emission						
Input	Value	Unit	Remarks			
Scenario: Heavy infe	estation		-			
Application rate of biocidal product	0.032	g per spot	S			
Concentration of active substance in the product	0.5	% w/w	S			
Number of applications per day per building	1	d-1	D The default for houses is 1. The default for large buildings is 3. For the latter, a value of 1 was used in this assessment, although this should be 3. One could argue that the 10 spots per m ² already suggests a worst-case value and that an additional 3 applications is overly conservative, but since the 3 application per day per building is EU agreed, this value should be used. An increase from 1 to 3 would results in a 50% increase of the overall emission for this product (houses + large buildings). This increase is not expected to change the outcome of this assessment (see final RQ table).			
Number of gel points per meter	10	Spots/m ²	S			
Fraction emitted to air	0	-	D			
Fraction emitted to applicator	0	-	D			
Fraction emitted to treated surface	1	-	D			
Area treated with product (house)	2	m²	D Targeted spot application			
Area treated with product (larger building)	9.3	m ²	D* Crack and crevice/ spot			
Cleaning efficiency (FcE)	0.03	-	D			

S = set; D =default; * Based on ECHA WG-II-2018 Item 7.3e: Generic treatment areas assigned to each specific pest (follow up of WG-I-2018)

<u>Calculations for the worst-case assessment for crack and crevice treatment (heavy infestation)</u>

Based on the above assumptions the calculated release to wastewater for each household is 0.096 mg/d and for each large building is 0.446 mg/d.

According to the ESD each STP catchment consists of 10,000 individuals each producing 200 litres of wastewater per day in 4000 households and 300 larger buildings.

As a worst-case it was assumed that 3 to 11 applications per year would be made and thus a simultaneity factor of 0.815% was used to account for simultaneous daily use. Taking these assumptions into account results in the following daily emission of wastewater to the STP.

Resulting local emission to relevant environmental compartments					
Compartment	Local emission (Elocal compartment) [kg/d] (each active)				
STP	4.22E-06	-			

Fate and distribution in exposed environmental compartments

Identification of relevant receiving compartments based on the exposure pathway									
	Fresh- water	Freshwater sediment	Sea- water	Seawater sediment	STP	Air	Soil	Ground- water	Other
Crack and crevice heavy infestation	Yes*	Yes*	No	No	Yes	No	Yes*	Yes*	No

*indirect exposure

Clothianidin - Input parameters for calculating the fate and distribution in the environment						
Input	Value	Unit	Remarks			
Molecular weight	249.7	g/mol				
Melting point	176.8	°C				
Vapour pressure (at 20°C)	3.8E-11	Ра				
Water solubility (at 20°C and pH 4)	304	mg/L				
Log Octanol/water partition coefficient (pH 7)	0.905	Log 10				
Organic carbon/water partition coefficient (Koc)	160	L/kg (arithmetic)				
Biodegradability	Not Readily	v biodegradable	All inputs taken			
DT ₅₀ for biodegradation in surface water and sediment	145.3	d (worst-case at whole system DT 50 at 12°C)	from the Assessment report for clothianidin (October 2014)			
DT ₅₀ for hydrolysis in surface water	stable	-				
DT_{50} for photolysis in surface water	23.4	d (at latitude 50°N)				
DT_{50} for degradation in soil	429.8	d (geomean field DT50 at 12°C)				
DT_{50} for degradation in air (24- hours-mean-day concentration of $5x10^5$ OH radical cm ⁻³)	2.8	hr				

Pyriproxyfen - Input parameters for calculating the fate and distribution in the environment						
Input	Value	Unit	Remarks			
Molecular weight	321.37	g/mol				
Melting point	48-50	°C				
Boiling point	318	°C				
Vapour pressure (at 22.81°C)	1.33E-5	Ра				
Water solubility (at 20°C and pH 7)	0.101	mg/L				
Log Octanol/water partition coefficient (pH 7)	4.86	Log 10				
Organic carbon/water partition coefficient (Koc)	21175	L/kg (mean)	All inputs taken			
Biodegradability	Not Readily	biodegradable	from the			
DT ₅₀ for biodegradation in surface water	12.3	d (geomean at 12ºC)	Assessment report for pyriproxyfen			
DT_{50} for biodegradation in sediment	34.2	d (geomean at 20ºC)	(September 2012)			
DT ₅₀ for hydrolysis in surface water	Stable	-				
DT ₅₀ for photolysis in surface water	5	d				
DT_{50} for degradation in soil	14.8	d (geomean at 12ºC)				
DT_{50} for degradation in air 24-	0.307	d				
hours-mean-day concentration of 5x10 ⁵ OH radical cm ⁻³						

Rate constant for biodegradation in STP	0.107	h-1	Inputs taken from
			(OECD 314B study)

Metabolites of Pyriproxyfen - Input parameters for calculating the fate and distribution in the environment					
Input		Value		Unit	Remarks
	4′-OH- Pyr [#]	DPH- Pyr	PYPAC		
Molecular weight	337.4	245.3	167.2	g/mol	
Vapour pressure (at 25°C)	1.05E-7	1.77E-4	7.77E-2	Ра	
WaterSolubility (at 25°C)*	1.4	- ¤	65000	mg/L	All inputs
Henry's law constant (at 25°C)	-	-	2.0E-4	Pa m ³ mol ⁻¹	taken from the
Organic carbon/water partition coefficient (Koc)	2598	9620*	20.7	L/kg (mean)	Assessment report for pyriproxyfen
DT_{50} for biodegradation in surface water ^{\$}	5.9	n.d.	51	d (geomean at 12°C)	(September 2012)
DT ₅₀ for biodegradation in sediment	24.9	n.d.	25.5	d (geomean at 20°C)	
DT_{50} for biodegradation in soil ^{\$}	65.4	n.d.	12.9	d (at 12ºC)	

For comparison purposes only. 4'-OH-Pyr was combined with the parent in the risk assessment.

* Obtained from Document IIB of the CAR.

* No experimentally determined value is available. Value of the parent used in the CAR.

^{\$} Obtained from Document IIA of the CAR.

Metabolites in STP and subsequent aquatic environment

As discussed in Section 2.2.8.1 further studies on fate and behaviour, an OECD 314B study on biodegradation in activated sludge of the active substance pyriproxyfen was conducted.

In the study, three metabolites were found: 4-OH-Pyr, DPH-Pyr and PYPAC. The transformation goes via 4-OH-pyriproxyfen into DPH-PYR and eventually into PYPAC. Considering that pyriproxyfen and hydroxypyriproxyfen (4-OH-Pyr) have the same fate and toxicological properties, the half-life was derived for the sum of the parent and the metabolite.

Combined Pyriproxyfen and 4-OH-Pyr - Input parameter for calculating the fate and distribution in the environment			
Value		Unit	Remarks
Rate constant for biodegradation in STP	0.107	h-1 (20°C)	Inputs taken from (OECD 314B study)

Calculated fate and distribution in the STP				
	Percenta			
Compartment	Clothianidin Combined And 4-OH-PYR [*]		Remarks	
Air	3.86E-11	0.05 (0.004)	Calculated with	
Water	98.0	21.98 (2.65)	SimpleTreat	
Sludge	1.96	64.24 (51.10)		
Degraded in STP	0	13.72 (46.28)		

^{*} Breakdown in the STP is calculated using Simple Treat 4.0 with 3.1 settings using the input data, half-life value, temperature. Values between brackets is the resulting distribution based on the OECD 314B test.

The first metabolite of concern is consequently DPH-Pyr.

For the calculation of the metabolite PECs in surface water, it is assumed that the entire fraction of pyriproxyfen that is degraded in the STP (13.72%) results in the formation of DPH-Pyr, i.e.:

Flocal -	Elocal _{water_Parent}	* F	. f .	$Mass_{molar_{TP}}$
Liocui _{water_TP} —	Liocalwater_Parent	* ^T STP degraded	*J _{ij} *	MassmolarParent

Symbol	Description	Unit
Elocal _{water_TP}	local emission rate of transformation product	[kg d ⁻¹]
Elocal _{water_Parent}	local emission rate of parent substance	[kg d ⁻¹]
F_{STP} , degraded	fraction of parent substance degraded in STP	[-]
f _{ij}	formation fraction of transformation product set to 1 as first tier worst case.	[-]
<i>Mass</i> _{molarTP}	molecular mass of transformation product	[g mol⁻¹]
Mass _{molarParent}	molecular mass of parent substance	[g mol⁻¹]

Since no information is available on the distribution between water, sediment and sludge, it is assumed that all mass goes to water (effluent STP). The amount of metabolite was derived from the parent's release (4.22 mg/d) according to aforementioned equation.

The metabolite concentrations in the effluent (PEC_{STP}) were calculated by applying a volume of 2000 m³/d. The PEC for surface water was derived by applying the dilution factor of ten and corrected for sorption onto suspended matter. DPH-Pyr and PYPAC were considered in the risk assessment. No sediment PECs are calculated, because both PECs and PNECs for the metabolites are based on equilibrium partitioning, which would result in similar PEC/PNEC ratios for the water and sediment compartment.

The study on degradation in soil (Section 2.2.8.1) indicates that the metabolites 4'-OH-Pyr, DPH-Pyr, and PYPAC are formed in soil. For the calculation of the PEC values of the metabolites in soil, it is assumed that the applied STP sludge only contains the parent pyriproxyfen and no metabolites. In addition, the metabolites are less hydrophobic than the parent and therefore are less likely to settle in the sludge. Hence, the metabolite formation in soil is considered to be more important than the metabolite formation in the STP sludge for metabolite levels in soil.

For the calculation of the PEC values of the metabolites in soil, AHEE 2019 guidance was implemented using the concentration in sludge of the parent as starting point multiplied

with the molar weight ratio and formation fraction. As a worst-case approach formation fraction is set at 1.

Concentrations in groundwater have been calculated in accordance with the guidance and the parameters used are stated elsewhere in the PAR.

Calculated PEC values

Sewage treatment plant (STP)

	PECstp
	[mg/L]
Clothianidin	2.07E-06
Pyriproxyfen including 4-OH-PYR	4.64E-07

Aquatic compartment

	PECwater	PECsed
	[mg/L]	[mg/kgwwt]
Clothianidin	2.07E-07	8.81E-07
Pyriproxyfen including 4OH-PYR	4.50E-08	2.07E-05

Terrestrial compartment

 PEC_{soil} after 10 sludge applications is based on the degradation rate of clothianidin in soil $(DT_{50}=429.8d)$ and the leaching rate on agricultural soils (k=0.00048), which leads to an accumulation factor (Facc) of 0.47. $PEC_{initial}$ is the concentration in soil after a single sludge application. The long-term soil concentrations after 10 years of sludge application are presented as the initial concentration (immediately after the last sludge application) and as the TWA concentration (30 days after the last sludge application). Because the PNEC is based on studies with a single exposure, the TWA PEC is not used in further calculations.

	PECinitial_0	PEC _{soil_10} after 10 sludge applications PECinitial	PEC _{soil_10} after 10 sludge applications PECTWA30d
	[mg/kg wwt]	[mg/kg wwt]	[mg/kg wwt]
Clothianidin	1.54E-07	2.88E-07	2.79E-07
Pyriproxyfen including 4'-OH-PYR	4.91E-06	4.91E-06	4.91E-06

Non target arthropods (Bees)

In line with the CAR for Clothianidin⁴, as clothianidin is a systemic insecticide and has been shown to be highly toxic to Bees, a risk assessment for Bees was performed. As currently no harmonized scenario is available, the assessment was based on a comparison of the PNEC_{Bee} and the PEC_{soil}. As a worst-case approach, it was assumed that the concentration in nectar and pollen is equivalent to the concentration in soil, i.e. a 100% uptake of clothianidin from soil by plants and a 100% transfer in nectar and pollen occurs. For the assessment, the highest PEC_{soil} value was used.

	PEC _{Bee}	
	[mg/kg wwt]	
Clothianidin	2.88E-07*	
Pyriproxyfen	n/a	

*Based on PECsoil after 10 sludge applications.

Groundwater

	PECgw
	[µg/L]
Clothianidin	9.49E-05
Pyriproxyfen including 4'-OH-PYR	7.05E-06

PECs for the metabolites of pyriproxyfen in the various compartments have been calculated by adjusting the relevant PEC for the parent compound for the maximum observed fraction formed in the relevant compartment in the environmental fate studies and the molecular weight ratio of parent and metabolite:

PEC metabolite = PEC parent * Fij * (molecular weight metabolite/molecular weight parent).

Summary table of calculated PEC values for the metabolites of pyriproxyfen				
PYPAC DPH-Pyr				
PECwater (mg/L)	1.51E-08	2.18E-08		
PECsoil (mg/kg wwt)	3.89E-06 3.34E-05			
PECgw (µg/L)	7.71E-03	1.69E-03		

Primary and secondary poisoning

Primary poisoning

Primary poisoning is not expected for the intended use. Hence the product meets the standards for the risk to birds and mammals.

Secondary poisoning

⁴ Assessment Report Clothianidin, Product-type 18 (Insecticides, Acaricides and Products to control other Arthropods), October 2014, Germany

The risk of bioaccumulation and subsequently secondary poisoning for clothianidin is considered to be negligible based on the low Log Kow (0.905) and calculated BCFs (BCF fish 0.78 L/kg wwt and BCF earthworm 0.9 L/kg wwt).

Concentrations in fish and earthworms were calculated for pyriproxyfen. $PEC_{oral,predator}$ for the aquatic environment was based on a measured BCF of 581 L/kg wet fish, the biomagnification factor (BMF = 2) for compounds with a log K_{ow} between 4.5 and 5, and the PEC water (3.42E-08 mg/L). The PEC for worm-eating birds and mammals was based on a BCF of 870 L/kg wwt calculated from the active substance's log Kow, the PECsoil TWA 30d (2.51E-6 mg/kgwwt), and an equilibrium partitioning-derived concentration in porewater (6.72E-06 mg/L).

The PEC_{oral, predator} in earthworms and fish for pyriproxyfen are given below.

Summary table of residues in Fish and Earthworms for pyriproxyfen	
	PEC _{oral, predator}
	[mg/kg wwt]
Fish	5.23E-05
Earthworms	5.51E-03

2.2.8.3 Risk characterisation

Sewage treatment plant (STP)

Summary table on calculated PEC/PNEC values	
	PEC/PNECstp
Clothianidin	<0.001
Pyriproxyfen	<0.001

<u>Conclusion</u>: The PEC/PNEC ratios for both active substances are significantly below one demonstrating an acceptable risk to STP microorganisms for both compounds.

Aquatic compartment

Summary table on calculated PEC/PNEC values					
	PEC/PNECwater PEC/PNECsed PEC/PNECseawater PEC/PNECseased				
Clothianidin	3.00E-03	3.00E-03	n/a	n/a	
Pyriproxyfen including 4'-OH-Pyr	0.015	0.015	n/a	n/a	

n/a – not applicable.

PEC/PNEC ratios have also been calculated for the major metabolites of pyriproxyfen (detected at >10%) in the water and/or sediment phases in the environmental fate studies). The PEC/PNEC ratios are given below.

Summary table on calculated PEC/PNEC values for the metabolites of pyriproxyfen				
	PEC/PNECwater	PEC/PNECsed PEC/PNECseawater PEC/P		PEC/PNECseased
РҮРАС	<0.001	n/a	n/a	n/a
DPH-Pyr	<0.001	n/a	n/a	n/a

n/a – not applicable

<u>Conclusion</u>: PEC/PNEC ratios for clothianidin, pyriproxyfen and metabolites of pyriproxyfen are below 1 demonstrating an acceptable risk to the aquatic compartment.

Terrestrial compartment

Calculated PEC/PNEC values		
	PEC/PNEC soil	
Clothianidin	<0.001	
Pyriproxyfen including 4'-OH-Pyr	0.004	

Calculated PEC/PNEC values	
	PEC/PNEC soil
РҮРАС	<0.001
DPH-Pyr	<0001

Non target arthropods (Bees)

The highest PEC_{soil} value was used to assess the risk of clothianidin to Bees. Pyriproxyfen is not a relevant substance for NTA assessment. The highest PEC_{soil} value is 4.68E-06 mg/kg wet wt soil. This corresponds to 4.68E-03 μ g/kg wet wt. As described in the section *Calculated PEC values* this value was directly compared to the PNEC_{Bee} (PNEC_{Bee} of 14.6 μ g a.s./kg nectar/pollen).

The calculated PEC/PNEC values for bees are below one (<0.001), therefore, it can be concluded that sewage sludge application contaminated with clothianidin to agricultural land will pose no risk to Bees exposed to clothianidin *via* nectar and pollen.

<u>Conclusion</u>: The soil PEC/PNEC ratios for both active substances are below one demonstrating an acceptable risk to soil organisms for both compounds. The risk of clothianidin to Bees is acceptable.

Groundwater

The PECgw for clothianidin and pyriproxyfen and metabolites DPH-pyr and PYPAC are 9.49E-05 μ g/L and 6.72E-06 μ g/L, 1.69E-03 and 7.71E-03 μ g/L, respectively. All are significantly below the threshold of 0.1 μ g/L and thus the risk to groundwater is considered to be low.

Primary and secondary poisoning

Primary poisoning

It is expected that birds and mammals are not directly exposed to (residues of) *Pesguard*[®] Gel as the product is used indoor and the secondary exposure is only possible in case the STP sludge is spread on agricultural soil as a fertilizer.

Secondary poisoning

Summary table on secondary poisoning for pyriproxyfen				
Scenario	PEC _{oral, predator} (mg/kg wwt)	PEC/PNEC		
fish-eating birds	5.23E-05	< 0.001		
fish-eating mammals	5.23E-05	< 0.001		
worm-eating bird	5.51E-03	< 0.001		
worm-eating mammals	5.51E-03	< 0.001		

<u>Conclusion</u>: The risk of bioaccumulation and subsequently secondary poisoning for clothianidin is considered to be negligible based on the low Log K_{ow} (<1) and calculated BCFs (also <1). PEC/PNECs for pyriproxyfen are significantly below 1 demonstrating an acceptable risk for secondary poisoning of birds and mammals.

Mixture toxicity

The product contains two active substances and therefore a mixture toxicity assessment according to the Transitional Guidance on mixture toxicity assessment for biocidal products for the environment (ECHA 2014) is required.

Screening step

Screening Step 1: Identification of the concerned environmental compartments

It is possible that all compartments for which PECs have been calculated may be exposed to both active substances.

Screening Step 2: Identification of relevant substances

The only substances within the product that fulfil the criteria given in Section 3.2.2 of the ECHA guidance are the active substances clothianidin and pyriproxyfen, both present in the formulation at a concentration of 0.5% w/w.

Screening Step 3: Screen on synergistic interactions

Clothianidin and pyriproxyfen are different classes of chemicals having differing modes of action. Clothianidin is a neonicotinoid insecticide and acts agonistically on insect

nicotinic acetylcholine receptors located in the central nervous system. Whereas pyriproxyfen is an insect growth regulator and acts as a juvenile hormone analogue (or mimic), interrupting the insect morphogenesis. It prevents (depending upon the time of application) egg hatching, metamorphosis of larvae into pupae, and pupae into adult.

Based on the differing modes of action synergism is considered unlikely and no synergistic effects have been reported. Neither substance fulfils any of the criteria given in Section 3.2.3 of the ECHA guidance. Synergistic effects are therefore considered unlikely.

Sc	Screening step		
	Significant exposure of environmental compartments? (Y/N) Y		
	Number of relevant substances >1? (Y/N) Y		
	Indication for synergistic effects for the product or its constituents in the literature? $(Y/N) N$		

<u>Tiered approach</u>

Large amounts of data are available for both active substances. The datasets are not identical therefore the ECHA guidance recommends that a Tier 2 assessment is performed for all compartments. However, the assessment scheme proposed in the ECHA guidance was adapted in order to target the higher tier risk assessment towards any compartments which may be of concern and an initial conservative Tier 1 assessment has been performed for all compartments.

Tier 1. PEC/PNEC summation

	Tier 1				
Compartment	RQ clothianidin	RQ pyriproxyfen	RQ product	Acceptable risk for the environment? (Y/N)	Remarks
Surface water	3.00E-03	1.5E-02	1.8E-02	Y	
Sediment	3.00E-03	1.5E-02	1.8E-02	Y	Equilibrium partitioning method used to define PNEC for both active substances
STP	< 0.001	< 0.001	< 0.001	Y	
Soil	< 0.001	0.004	0.004	Y	
Bees	<0.001	-	<0.001	Y	Clothianidin only, Bees are not exposed to pyriproxyfen
Groundwater	< 0.001	< 0.001	< 0.001	Y	
Secondary poisoning of birds and mammals	-	< 0.001	< 0.001	Y	Only pyriproxyfen relevant for secondary

	poisoning assessment.
--	--------------------------

<u>Conclusion</u>: Based on the conservative Tier 1 assessment above, an acceptable risk is identified for all compartments, for bees and for secondary poisoning of birds and mammals.

Aggregated exposure (combined for relevant emission sources)

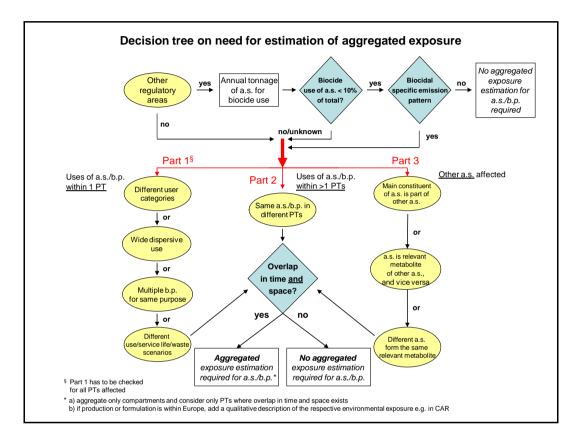


Figure 1: Decision tree on the need for estimation of aggregated exposure

Description:

Clothianidin and pyriproxyfen are also authorized according to the Regulation No. 1107/2009 concerning the placing of plant protection products on the market. Clothianidin and pyriproxyfen are mainly used in biocidal products in the EU. These products are used in different areas, therefore there is no overlapping use of the products.

Decision steps: Other regulatory areas(?): Yes Biocide use of a.s. < 10 %? No Different user categories(?):Yes Overlap in time and space(?): No **Conclusion:** No aggregated exposure estimation required

<u>Conclusion</u>: No aggregated exposure estimation required based on the decision tree analysis.

Overall conclusion on the risk assessment for the environment of the product

Based on the above assessment it can be concluded that the use of *Pesguard*[®] Gel as proposed presents an acceptable risk to the environment.

2.2.9 Measures to protect man, animals and the environment

Please refer to summary of the product assessment (SPC) and to the relevant sections of the assessment report.

2.2.10 Assessment of a combination of biocidal products

Not relevant as Pesguard $\ensuremath{\mathbb{R}}$ Gel is not intended to be used with other products therefore no combined assessment is necessary.

2.2.11 Comparative assessment

2.2.11.1 Background

Under Article 23(1) of Regulation 528/2012 Member States evaluating biocidal products containing an active substance that is a candidate for substitution (CfS) in accordance with Article 10(1) are required to perform a comparative assessment.

Pesguard gel contains the candidate for substitution Clothianidin in combination with Pyriproxyfen (which is not a candidate for substitution).

The approach in the most recently endorsed EU guidance on the comparative assessment of the biocidal product was used. In line with this Note for Guidance, the comparative assessment was begun with the screening phase (Annex 7.1 of guidance document) to identify whether the diversity of the active substances - mode of action combination in authorised biocidal products, is adequate.

2.2.11.2 Screening phase of comparative assessment

The first step in comparative assessment is to perform an assessment of the existing chemical diversity in authorised biocidal products to minimise the occurrence of resistance.

2.2.11.2.1 Intended use of the biocidal product and properties of active substances

Article 23(3) and the Note for Guidance focus the comparative assessment on the uses specified in the application of the biocidal product, as the requirement for a comparative assessment is product specific.

Table 1: Intended uses of the biocidal product

, i	PT 18 - Insecticides, acaricides and products to control other arthropods.
Where relevant, an exact description	Insecticide

of the authorised use	
Target organism (including, where relevant) development stage)	 German cockroach (Blattella germanica)- Brown banded cockroach (Supella longipalpa) American cockroach (Periplaneta americana) Oriental cockroach (Blatta orientalis)
	Developmental stages: Adults/nymphs
Field(s) of use	Indoor
Application method(s)	Bait application (RTU)
Category(ies) of users	Professional

As shown in table 1, the biocidal product Pesguard gel, containing Clothianidin and Pyriproxyfen, is intended for use as a bait to control 4 cockroach species by professional users indoors.

2.2.11.2.2 Chemical diversity of the active substances - mode of action combination in authorised biocidal products

The IRAC (Insecticide Resistance Action Committee) has provided information on the potential for resistance; which has also been derived from experience with plant protection products.

As a general rule (CA-May15-Doc.4.3.a-Final) three different and independent active substance/mode of action combinations are needed to consider that diversity is adequate.

To check whether three or more of these combinations are already authorized Pesguard gel is compared with other authorized products in PT18 against cockroaches. According to the information available to the NL CA via the ECHA website, there are 66 biocidal products against cockroaches (as of November 11th 2019) authorised in the EU under Product Type 18 (Insecticides, acaricides and products to control other arthropods) of the Biocidal Products Directive and Biocidal Products Regulation (including Mutual Recognitions and Same Product authorisations).

These products are based on 17 different active substances with 6 different modes of action (based on the IRAC classification of Mode of Action).

However, when specifying further for products against Brown banded Cockroaches (*Supella longipalpa*) for use indoor by professionals only 13 products are authorised, based on 5 different active substances with 2 different Modes of Action.

Pesguard gel contains 2 active substances. The mode of action of Clothianidin is one of the 2 MoA which are already authorised (see table 2). However, Pyriproxyfen has a different mode of action and as such, Pesguard gel provided the third active substance/mode of action combination needed for adequate diversity of biocidal products against a target species.

Table 2: Mode of action for PT18 insecticidal active substances in biocidal
products authorised for Professionals against Brown banded cockroaches.

Active substance	List	Mode of action (IRAC)
Imidacloprid / Clothianidin	<u>4.a. Neonicotinoid</u> .	Nicotinic acetylcholine receptor (NACHR)competitive modulator Bind to the acetylcholine site on nAChRs, causing a range of symptoms from hyperexcitation to lethargy and paralysis. Acetylcholine is the major excitatory

		neurotransmitter in the insect central nervous system.
Fipronil	<u>2.b. Phenylpyrazoles</u>	GABA gated chloride channel blockers Block the GABA-activated chloride channel, causing hyperexcitation and convulsions. GABA is the major inhibitory neurotransmitter in insects.
Pyriproxyfen	<u>7.c. Pyriproxyfen</u>	Juvenile hormone Mimics Applied in the pre-metamorphic instar, these compounds disrupt and prevent metamorphosis.

The specified use for Pesguard gel in this application is Cockroach bait for professional use.

In addition to Imidacloprid and Fipronil, it can be seen that Clothianidin in combination with Pyriproxyfen is a key alternative active substance combination, providing a non-phenylpyrazoles, partly non-neonicotinoid choice of alternative for use as Cockroach bait against e.g Brown banded Cockroaches for Professionals to avoid resistance.

Therefore, the NL CA concludes that there is not an adequate chemical diversity and in line with Article 23(3)(b) and according to the Note for Guidance no further investigation is needed at this point. As such, the comparative assessment for Pesguard gel can be finalised at the screening stage and the application taken forward to product authorisation in accordance with Article 23(6) of BPR.

3 Annexes

3.1 List of studies for the biocidal product

Author	Year	Title	Testing laboratory	Report no.	Legal entity owner	Report date	Endpoint names	GLP	Published/ Unpublished	Data Protection Claimed
		Bio-efficacy evaluation of cockroach gel baits against male American cockroaches (Choice test method)			Sumitomo Chemical (U.K.) Plc		Efficacy data to support these claims.006	No	Unpublished	Yes
		Primary Skin Irritation in Rabbits			Sumitomo Chemical (U.K.) Plc		Skin irritation / corrosion	Yes	Unpublished	Yes
		Primary Eye Irritation in Rabbits			Sumitomo Chemical (U.K.) Plc		Eye irritation	No	Unpublished	Yes
		: Dermal Sensitization Test in Guinea Pigs - Buehler Method			Sumitomo Chemical (U.K.) Plc		Skin sensitisation	Yes	Unpublished	Yes
		Acute Oral Toxicity - Up-And-Down Procedure In Rats			Sumitomo Chemical (U.K.) Plc		Acute toxicity: oral	No	Unpublished	Yes
		: Acute Demal Toxicity in Rats			Sumitomo Chemical (U.K.) Plc		Acute toxicity: derma	No	Unpublished	Yes

Author	Year	Title	Testing laboratory	Report no.	Legal entity owner	Report date	Endpoint names	GLP	Published/ Unpublished	Data Protection Claimed
		Laboratory bioassay to determine the efficacy of X against brown banded and American cockroaches			Sumitomo Chemical (U.K.) Plc		Efficacy data to support these claims.001 (Supella longipalpa and Periplaneta americana), Hostetler (2015) TNsG PT18	Yes	Unpublished	Yes
		Product Chemistry and Characterization of			Sumitomo Chemical (U.K.) Plc		Acidity, alkalinity _ Jeffries D.A. (2015)	Yes	Unpublished	Yes
		Analytical Support for			Sumitomo Chemical (U.K.) Plc		Methods of detection and identification_Jeffries D.A. (2016)	Yes	Unpublished	Yes
		Product Chemistry and Characterization of			Sumitomo Chemical (U.K.) Plc		Appearance (at 20°C and 101.3 kPa) _ Jeffries D.A. (2015) Relative density (liquids) and bulk, tap density (solids) _ Jeffries D.A. (2015) Explosives (4.1) _ Jeffries D.A. (2015) Flam mability solids (4.7) _ Jeffries D.A. (2015) Oxidising solids (4.14) _ Jeffries D.A. (2015)		Unpublished	Yes
		Accelerated Storage Stability Study of Cockroach Bait Sample (Sumitomo Chemical (U.K.) Plc		Storage stability tests (Mahidon M., 2015)	No	Unpublished	Yes

Author	Year	Title	Testing laboratory	Report no.	Legal entity owner	Report date	Endpoint names	GLP	Published/ Unpublished	Data Protection Claimed
		Determination of the Biodegradability of [14C]Pyriproxyfen in Activated Sludge Based on OECD Method 314B			Sumitomo Chemical (U.K.) Plc		Additional information on environmental fate and behaviour_McLaughli n S.P. (2015)		Unpublished	Yes
		Bio-efficacy evaluation of cockroach gel baits against German cockroaches (Choice test method)			Sumitomo Chemical (U.K.) Plc		Efficacy data to support these claims.004 (Blattella germanica), Serit (2015) TNsG PT18	No	Unpublished	Yes
		Field trial investigating the efficacy of an Insecticidal bait treatment to control German and Oriental cock roaches			Sumitomo Chemical (UK) Plc		Efficacy data to support these claims.004 Field trial (Blattella germanica and Blatta orientalis) Serrano (2015)_TNsG PT18	No	Unpublished	Yes
		Developmental abnormalities induced by pyriproxyfen containing cock roach bait in nymphal German cockroaches, Blattella germanica			Sumitomo Chemical (U.K.) Plc		Efficacy data to support these claims.002 (Blattella germanica), Suranyi (2015a)_TNsG PT18	No	Unpublished	Yes
		Laboratory efficacy evaluation of against German cockroaches, Blattella germanica			Sumitomo Chemical (U.K.) Plc		Efficacy data to support these claim s.003 (Blattella germanica), Suranyi (2015b)_TNsG PT18	No	Unpublished	Yes
		Field trial investigating the efficacy of an insecticidal bait treatment to control American and brown- banded cockroaches			Sumitomo Chemical (U.K.) Plc		Efficacy data to support these claims.007_Field Study_Supella longipalapa and Peripalneta Americana_Serrano (2017a)_TNsG PT18	No	Unpublished	Yes

Author	Year	Title	Testing laboratory	Report no.	Legal entity owner	Report date	Endpoint names	GLP	Published/ Unpublished	Data Protection Claimed
		Field trial investigating the efficacy of an insecticidal bait treatment to control German cockroaches			Sumitomo Chemical (U.K.) Plc		Efficacy data to support these claims.008_Field Blattella germanica_Serrano (2017b)_TNsG PT18	No	Unpublished	Yes
		Laboratory bioassay to determine the palatability and efficacy of an insecticidal bait against cockroach species			Sumitomo Chemical (U.K.) Plc			No	Unpublished	Yes
		Storage Stability Evaluation of			Sumitomo Chemical (U.K.) Plc		Storage stability tests-accelerated	Yes	Unpublished	Yes
		Storage Stability Evaluation of			Sumitomo Chemical (U.K.) Plc		Storage stability tests _ long-term	Yes	Unpublished	Yes

3.2 Output tables from exposure assessment tools

3.3 New information on the active substance

The proposed PAR and IUCLID includes a new study assessing biodegradability of pyriproxyfen in activated sludge (OECD 314B). A study summary and the study report are contained within both the product IUCLID dossier and the active substance IUCLID dossier for Pyriproxyfen.

3.4 Residue behaviour

Not applicable.

3.5 Summaries of the efficacy studies (B.5.10.1-xx)

Please refer to IUCLID Section 6.7 and section 2.2.5.5 of the PAR.