

Helsinki, 21 June 2022

Addressees

Registrant(s) of JS_S-600 as listed in Appendix 3 of this decision

Date of submission of the dossier subject to this decision 11/04/2019

Registered substance subject to this decision ("the Substance")

Substance name: Molybdenum, bis(N,N-dibutylcarbamodithioato- κ S, κ S')dioxodi- μ -

thioxodi-, stereoisomer EC number: 825-571-0

Decision number: Please refer to the REACH-IT message which delivered this communication (in format CCH-D-XXXXXXXXXXXXXXXX)

DECISION ON A COMPLIANCE CHECK

Under Article 41 of Regulation (EC) No 1907/2006 (REACH), you must submit the information listed below, by the deadline of **26 June 2025**.

Requested information must be generated using the Substance unless otherwise specified.

Information required from all the Registrants subject to Annex VII of REACH

1. Long-term toxicity testing on aquatic invertebrates (triggered by Annex VII, Section 9.1.1., column 2; test method: EU C.20./OECD TG 211)

Information required from all the Registrants subject to Annex VIII of REACH

- 2. Long-term toxicity testing on fish (triggered by Annex VIII, Section 9.1.3., column 2; test method: EU C.47./OECD TG 210)
- 3. Soil simulation testing (triggered by Annex VIII, Section 9.2.; test method: EU C.23./OECD TG 307) at a temperature of 12°C. Non-extractable residues (NER) must be quantified and a scientific justification of the selected extraction procedures and solvents must be provided.
- 4. Sediment simulation testing (triggered by Annex VIII, Section 9.2.; test method: EU C.24./OECD TG 308) at a temperature of 12°C. Non-extractable residues (NER) must be quantified and a scientific justification of the selected extraction procedures and solvents must be provided.
- 5. Identification of degradation products (triggered by Annex VIII, Section 9.2; test method: using an appropriate test method.
- 6. Bioaccumulation in aquatic species (triggered by Annex I, sections 0.6.1. and 4.; Annex XIII, Section 2.1.; test method: EU C.13./OECD TG 305, dietary exposure)

The reasons for the decision(s) are explained in Appendix 1.

Information required depends on your tonnage band

You must provide the information listed above for all REACH Annexes applicable to you in accordance with Articles 10(a) and 12(1) of REACH. The addressees of the decision and their corresponding information requirements based on registered tonnage band are listed in Appendix 3.

You are only required to share the costs of information that you must submit to fulfil your information requirements.

How to comply with your information requirements

To comply with your information requirements, you must submit the information requested by this decision in an updated registration dossier by the deadline indicated above. You must also **update the chemical safety report, where** relevant, including any changes to classification and labelling, based on the newly generated information.

You must follow the general requirements for testing and reporting new tests under REACH, see Appendix 4. In addition, the studies relating to biodegradation and bioaccumulation are necessary for the PBT assessment. However, to determine the testing needed to reach the conclusion on the persistency and bioaccumulation of the Substance you should consider the sequence in which these tests are performed and other conditions described in this Appendix.

Appeal

This decision, when adopted under Article 51 of REACH, may be appealed to the Board of Appeal of ECHA within three months of its notification to you. Please refer to http://echa.europa.eu/regulations/appeals for further information.

Failure to comply

If you do not comply with the information required by this decision by the deadline indicated above, ECHA will notify the enforcement authorities of your Member State.

Authorised¹ under the authority of -Mike Rasenberg, Director of Hazard Assessment

Appendix 1: Reasons for the decision

Appendix 2: Procedure

Appendix 3: Addressees of the decision and their individual information requirements

Appendix 4: Conducting and reporting new tests under REACH

¹ As this is an electronic document, it is not physically signed. This communication has been approved according to ECHA's internal decision-approval process.

Appendix 1: Reasons for the decision

Contents

Reas	sons related to the information under Annex VII of REACH	. 4		
	Long-term toxicity testing on aquatic invertebrates			
Reas	ons related to the information under Annex VIII of REACH	. 5		
2.	Long-term toxicity testing on fish	. 5		
3.	Soil simulation testing	. 5		
4.	Sediment simulation testing	. 7		
5.	Identification of degradation products	. 8		
6.	Bioaccumulation in aquatic species	. 9		
Refe	References			

Reasons related to the information under Annex VII of REACH

1. Long-term toxicity testing on aquatic invertebrates

Short-term toxicity testing on aquatic invertebrates is an information requirement under Column 1 of Annex VII to REACH (Section 9.1.1.). However, long-term toxicity testing on aquatic invertebrates must be considered (Section 9.1.1., Column 2) if the substance is poorly water soluble.

1.1. Information provided

You have provided an OECD TG 202 study (2018) but no information on long-term toxicity on aquatic invertebrates for the Substance.

1.2. Assessment of the information provided

We have assessed this information and identified the following issue:

Poorly water soluble substances require longer time to reach steady-state conditions. As a result, the short-term tests does not give a true measure of toxicity for this type of substances and the long-term test is required. A substance is regarded as poorly water soluble if, for instance, it has a water solubility below 1 mg/L or below the detection limit of the analytical method of the test material (Guidance on IRs and CSA, Section R.7.8.5).

- In the provided OECD TG 105 study (2019), the saturation concentration of the Substance in water was determined to be \leq 0.1 μ g/L at 20 °C, pH 8.
- Therefore, the Substance is poorly water soluble and information on long-term toxicity on aquatic invertebrates must be provided.

1.3. Study design and test specifications

The Substance is difficult to test due to the low water solubility ($\leq 0.1 \, \mu g/L$) and adsorptive properties (Log Kow >7.2, Log Koc >5.63). OECD TG 211 specifies that, for difficult to test substances, you must consider the approach described in OECD GD 23 or other approaches, if more appropriate for your substance. In all cases, the approach selected must be justified and documented. Due to the properties of Substance, it may be difficult to achieve and maintain the desired exposure concentrations. Therefore, you must monitor the test concentration(s) of the Substance throughout the exposure duration and report the results. If it is not possible to demonstrate the stability of exposure concentrations (i.e. measured concentration(s) not within 80-120% of the nominal concentration(s)), you must express the effect concentration based on measured values as described in OECD TG 211. In case a dose-response relationship cannot be established (no observed effects), you must demonstrate that the approach used to prepare test solutions was adequate to maximise the concentration of the Substance in the test solutions.

Reasons related to the information under Annex VIII of REACH

2. Long-term toxicity testing on fish

7 Short-term toxicity testing on fish is an information requirement under Column 1 of Annex VIII to REACH (Section 9.1.3.). However, long-term toxicity testing on fish must be considered (Section 9.1.3., Column 2) if the substance is poorly water soluble.

2.1. Information provided

You have provided an OECD TG 203 study (2018) but no information on long-term toxicity on fish for the Substance.

2.2. Assessment of the information provided

- 9 We have assessed this information and identified the following issue:
- Poorly water soluble substances require longer time to reach steady-state conditions. As a result, the short-term tests does not give a true measure of toxicity for this type of substances and the long-term test is required. A substance is regarded as poorly water soluble if, for instance, it has a water solubility below 1 mg/L or below the detection limit of the analytical method of the test material (Guidance on IRs and CSA, Section R.7.8.5).
- As already explained under Section 1, the Substance is poorly water soluble and information on long-term toxicity on fish must be provided.

2.3. Study design and test specifications

- To fulfil the information requirement for the Substance, the Fish, Early-life Stage Toxicity Test (test method OECD TG 210) is the most appropriate (Guidance on IRs and CSA, Section R.7.8.2.).
- The Substance is difficult to test due to the low water solubility ($\leq 0.1 \, \mu g/L$) and adsorptive properties (Log Kow >7.2, Log Koc >5.63). OECD TG 210 specifies that, for difficult to test substances, you must consider the approach described in OECD GD 23 or other approaches, if more appropriate for your substance. In all cases, the approach selected must be justified and documented. Due to the properties of Substance, it may be difficult to achieve and maintain the desired exposure concentrations. Therefore, you must monitor the test concentration(s) of the Substance throughout the exposure duration and report the results. If it is not possible to demonstrate the stability of exposure concentrations (i.e. measured concentration(s) not within 80-120% of the nominal concentration(s)), you must express the effect concentration based on measured values as described in OECD TG 210. In case a dose-response relationship cannot be established (no observed effects), you must demonstrate that the approach used to prepare test solutions was adequate to maximise the concentration of the Substance in the test solutions.

3. Soil simulation testing

- 14 Further degradation testing must be considered if the chemical safety assessment (CSA) according to Annex I indicates the need to investigate further the degradation of the substance (Annex VIII, Section 9.2., Column 2).
- This information requirement is triggered in case the chemical safety assessment (CSA) indicates the need for further degradation investigation (Annex I, Section 4; Annex XIII, Section 2.1), such as if the substance is a potential PBT/vPvB substance (Guidance on IRs and CSA, Section R.11.4). This is the case if the Substance itself or any of its constituent

or impurity present in concentration $\geq 0.1\%$ (w/w) or relevant transformation/degradation product meets the following criteria.

- it is potentially persistent or very persistent (P/vP) as:
 - \circ it is not readily biodegradable (*i.e.* <60% degradation in an OECD 301B), and;
- it is potentially bioaccumulative or very bioaccumulative (B/vB) as:
 - o it has a high potential to partition to lipid storage (e.g. $log K_{ow} > 4.5$);

3.1. Information provided

- 16 Your registration dossier provides the following
 - The Substance is not readily biodegradable (0% degradation after 28 days in OECD TG 301B);
 - The Substance has a high potential to partition to lipid storage (Log K_{ow} of >7.2 based on OECD TG 117);
- 17 Furthermore, the information in your dossier is currently incompliant and therefore:
 - it is not possible to conclude on the bioaccumulation potential of the Substance (see Request in Section 6 of this decision), and
 - it is not possible to conclude on the toxicity of the Substance (see Requests in Sections 1 and 2 of this decision).
- Based on the above, the available information on the Substance indicates that it is a potential PBT/vPvB substance.
- Further, the Substance has low water solubility ($\leq 0.1 \,\mu\text{g/L}$), high partition coefficient (Log Kow >7.2) and high adsorption coefficient (log Koc,soil of >5.63), indicating high potential to adsorb to soil.
- Therefore, the chemical safety assessment (CSA) indicates the need for further degradation investigation. Based on the adsorptive properties of the Substance, soil represents a relevant environmental compartment.
 - 3.2. Study design and test specifications
- 21 Simulation degradation studies must include two types of investigations (Guidance on IRs and CSA, Section R.7.9.4.1.):
 - 1) a degradation pathway study where transformation/degradation products are quantified and, if relevant, are identified, and
 - 2) a kinetic study where the degradation rate constants (and degradation half-lives) of the parent substance and of relevant transformation/degradation products are experimentally determined.
- In accordance with the specifications of OECD TG 307, you must perform the test using at least four soils representing a range of relevant soils (i.e. varying in their organic content, pH, clay content and microbial biomass).

- The required test temperature is 12°C, which corresponds to the average environmental temperature for the EU (Guidance on IRs and CSA, Table R.16-8) and is in line with the applicable test conditions of the OECD TG 307.
- In accordance with the specifications of OECD TG 307, non-extractable residues (NER) must be quantified. The reporting of results must include a scientific justification of the used extraction procedures and solvents (Guidance on IRs and CSA, Section R.7.9.4.1.). By default, total NER is regarded as non-degraded Substance. However, if reasonably justified and analytically demonstrated a certain part of NER may be differentiated and quantified as irreversibly bound or as degraded to biogenic NER, such fractions could be regarded as removed when calculating the degradation half-life(s) (Guidance on IRs and CSA, Section R.11.4.1.1.3.). Further recommendations may be found in the background note on options to address non-extractable residues in regulatory persistence assessment available on the ECHA website.
- Relevant transformation/degradation products are at least those detected at ≥ 10% of the applied dose at any sampling time or those that are continuously increasing during the study even if their concentrations do not exceed 10% of the applied dose, as this may indicate persistence (OECD TG 307; Guidance on IRs and CSA, Section R.11.4.1.).

4. Sediment simulation testing

- Further degradation testing must be considered if the chemical safety assessment (CSA) according to Annex I indicates the need to investigate further the degradation of the substance (Annex VIII, Section 9.2., Column 2).
- This information requirement is triggered in case the chemical safety assessment (CSA) indicates the need for further degradation investigation (Annex I, Section 4; Annex XIII, Section 2.1), such as if the substance is a potential PBT/vPvB substance (Guidance on IRs and CSA, Section R.11.4.).
- As already explained in the Request in Section 3, the Substance is a potential PBT/vPvB substance.
- Further, the Substance has low water solubility ($\leq 0.1 \, \mu g/L$), high partition coefficient (Log Kow >7.2) and high adsorption coefficient (log Koc,soil of >5.63), indicating high potential to adsorb to sediment.
- Therefore, the chemical safety assessment (CSA) indicates the need for further degradation investigation. Based on the adsorptive properties of the Substance, sediment represents a relevant environmental compartment.

4.1. Study design and test specifications

- 31 Simulation degradation studies must include two types of investigations (Guidance on IRs and CSA, Section R.7.9.4.1.):
 - 1) a degradation pathway study where transformation/degradation products are quantified and, if relevant, are identified, and
 - 2) a kinetic study where the degradation rate constants (and degradation half-lives) of the parent substance and of relevant transformation/degradation products are experimentally determined.
- In accordance with the specifications of OECD TG 308, you must perform the test using two sediments. One sediment should have a high organic carbon content (2.5-7.5%) and a fine texture, the other sediment should have a low organic carbon content (0.5-2.5%) and a

coarse texture. If the Substance may also reach marine waters, at least one of the watersediment systems should be of marine origin.

- The required test temperature is 12°C, which corresponds to the average environmental temperature for the EU (Guidance on IRs and CSA, Table R.16-8) and is in line with the applicable test conditions of the OECD TG 308.
- In accordance with the specifications of OECD TG 308, non-extractable residues (NER) must be quantified. The reporting of results must include a scientific justification of the used extraction procedures and solvents (Guidance on IRs and CSA, Section R.7.9.4.1.). By default, total NER is regarded as non-degraded Substance. However, if reasonably justified and analytically demonstrated a certain part of NER may be differentiated and quantified as irreversibly bound or as degraded to biogenic NER, such fractions could be regarded as removed when calculating the degradation half-life(s) (Guidance on IRs and CSA, Section R.11.4.1.1.3.). Further recommendations may be found in the background note on options to address non-extractable residues in regulatory persistence assessment available on the ECHA website.
- Relevant transformation/degradation products are at least those detected at \geq 10% of the applied dose at any sampling time or those that are continuously increasing during the study even if their concentrations do not exceed 10% of the applied dose, as this may indicate persistence (OECD TG 308; Guidance on IRs and CSA, Section R.11.4.1.).

5. Identification of degradation products

- Further degradation testing must be considered if the chemical safety assessment (CSA) according to Annex I indicates the need to investigate further the degradation of the substance (Annex VIII, Section 9.2., Column 2).
- This information requirement is triggered in case the chemical safety assessment (CSA) indicates the need for further degradation investigation (Annex I, Section 4; Annex XIII, Section 2.1), such as if the substance is a potential PBT/vPvB substance (Guidance on IRs and CSA, Section R.11.4.).
- As already explained in the Request in Section 3, the Substance is a potential PBT/vPvB substance.
- Therefore, the chemical safety assessment (CSA) indicates the need for further degradation investigation.

5.1. Study design and test specifications

- Regarding the selection of appropriate and suitable test method(s), the method(s) will have to be substance-specific. Identity, stability, behaviour, and molar quantity of the degradation/transformation products relative to the Substance must be evaluated and reported, when analytically possible. In addition, degradation half-life, log Kow and potential toxicity of the transformation/degradation may need to be investigated. You may obtain this information from the degradation studies requested in Sections 3 and 4, or by some other measure. If any other method is used for the identification of the transformation/degradation products, you must provide a scientifically valid justification for the chosen method.
- To determine the degradation rate of the Substance, the requested studies according to OECD TG 308/307 (Requests in Sections 3 and 4) must be conducted at 12°C and at test material application rates reflecting realistic assumptions. However, to overcome potential analytical limitations with the identification and quantification of major transformation/degradation products, you may consider running a parallel test at higher

temperature (but within the frame provided by the test guideline) and at higher application rate (e.g. 10 times).

You may also use other appropriate and suitable test method(s) to provide information on the identity of the transformation/degradation products, for example an enhanced screening level degradation test or modelling tools. You will need to provide a scientifically valid justification for the chosen method. The provided information should include, identification, stability, behaviour, molar quantity of transformation/degradation products relative to the parent compound. In addition, degradation half-life, log Kow and potential toxicity of the transformation/degradation may need to be investigated.

6. Bioaccumulation in aquatic species

- Bioaccumulation in aquatic species is required for the purpose of PBT/vPvB assessment (Annex I, Sections 0.6.1 and 4 to REACH).
- This information requirement is triggered in case the chemical safety assessment (CSA) indicates the need for further investigation on bioaccumulation in aquatic species (Annex I, Section 4; Annex XIII, Section 2.1), such as if the substance is a potential PBT/vPvB substance (Guidance on IRs and CSA, Section R.11.4.).
- As already explained in the Request in Section 3, the Substance is a potential PBT/vPvB substance.
- Therefore, the chemical safety assessment (CSA) indicates the need for further investigation on bioaccumulation in aquatic species.

6.1. Study design and test specification

Bioaccumulation in fish: aqueous and dietary exposure (Method EU C.13 / OECD TG 305) is the preferred test to investigate bioaccumulation (Guidance on IRs and CSA, Section R.7.10.3.1.). Exposure via the aqueous route (OECD TG 305-I) must be conducted whenever technically feasible. The low water solubility (<0.1 μ g/L) and the high adsorption potential (log K_{ow} of >7.2 / log K_{oc} of 5.63 of the Substance indicate significant uncertainty on the feasibility of a study using aqueous exposure. Therefore, in this case, the test is requested to be performed using dietary exposure. You must also attempt to estimate the corresponding BCF value from the dietary test (OECD 305-III) data according to Annex 8 of the OECD 305 TG and OECD Guidance Document on Aspects of OECD TG 305 on Fish Bioaccumulation (ENV/JM/MONO (2017)16).

References

The following documents may have been cited in the decision.

Guidance on information requirements and chemical safety assessment (Guidance on IRs & CSA)

- Chapter R.4 Evaluation of available information; ECHA (2011). Chapter R.6 QSARs, read-across and grouping; ECHA (2008).
 - Appendix to Chapter R.6 for nanoforms; ECHA (2019).
- Chapter R.7a Endpoint specific guidance, Sections R.7.1 R.7.7; ECHA (2017).

 Appendix to Chapter R.7a for nanomaterials; ECHA (2017).
- Chapter R.7b Endpoint specific guidance, Sections R.7.8 R.7.9; ECHA (2017).

 Appendix to Chapter R.7b for nanomaterials; ECHA (2017).
- Chapter R.7c Endpoint specific guidance, Sections R.7.10 R.7.13; (ECHA 2017).
 - Appendix to Chapter R.7a for nanomaterials; ECHA (2017). Appendix R.7.13-2 Environmental risk assessment for metals and metal
- compounds; ECHA (2008). Chapter R.11 PBT/vPvB assessment; ECHA (2017).
- Chapter R.16 Environmental exposure assessment; ECHA (2016).

Guidance on data-sharing; ECHA (2017).

All Guidance on REACH is available online: https://echa.europa.eu/guidance-documents/guidance-on-reach

Read-across assessment framework (RAAF)

RAAF, 2017 Read-across assessment framework (RAAF), ECHA (2017)
RAAF UVCB, 2017 Read-across assessment framework (RAAF) – considerations on multi- constituent substances and UVCBs), ECHA (2017).

The RAAF and related documents are available online:

https://echa.europa.eu/support/registration/how-to-avoid-unnecessary-testing-on-animals/grouping-of-substances-and-read-across

OECD Guidance documents (OECD GDs)

OECD GD 23	Guidance document on aquatic toxicity testing of difficult
	substances and mixtures; No. 23 in the OECD series on testing and assessment, OECD (2019).
OECD GD 29	Guidance document on transformation/dissolution of metals and
	metal compounds in aqueous media; No. 29 in the OECD series on
	testing and assessment, OECD (2002).
OECD GD 150	Revised guidance document 150 on standardised test guidelines for
	evaluating chemicals for endocrine disruption; No. 150 in the OECD
	series on testing and assessment, OECD (2018).
OECD GD 151	Guidance document supporting OECD test guideline 443 on the
	extended one-generation reproductive toxicity test; No. 151 in the
	OECD series on testing and assessment, OECD (2013).

Appendix 2: Procedure

This decision does not prevent ECHA from initiating further compliance checks at a later stage on the registrations present.

ECHA followed the procedure detailed in Articles 50 and 51 of REACH.

The compliance check was initiated on 16 June 2021.

ECHA notified you of the draft decision and invited you to provide comments.

ECHA did not receive any comments within the commenting period.

ECHA notified the draft decision to the competent authorities of the Member States for proposals for amendment.

As no amendments were proposed, ECHA adopted the decision under Article 51(3) of REACH.

Appendix 3: Addressees of this decision and their corresponding information requirements

In accordance with Articles 10(a) and 12(1) of REACH, the information requirements for individual registrations are defined as follows:

- the information specified in Annex VII to REACH, for registration at 1-10 tonnes per year (tpa), or as a transported isolated intermediate in quantity above 1000 tpa;
- the information specified in Annexes VII and VIII to REACH, for registration at 10-100 tpa;
- the information specified in Annexes VII, VIII and IX to REACH, for registration at 100-1000 tpa;
- the information specified in Annexes VII to X to REACH, for registration at more than 1000 tpa.

Registrant Name	Registration number	Highest REACH Annex applicable to you

Where applicable, the name of a third party representative (TPR) may be displayed in the list of recipients whereas ECHA will send the decision to the actual registrant.

Appendix 4: Conducting and reporting new tests for REACH purposes

1. Requirements when conducting and reporting new tests for REACH purposes

1.1. Test methods, GLP requirements and reporting

- (1) Under Article 13(3) of REACH, all new data generated as a result of this decision must be conducted according to the test methods laid down in a European Commission Regulation or to international test methods recognised by the Commission or ECHA as being appropriate.
- (2) Under Article 13(4) of REACH, ecotoxicological and toxicological tests and analyses must be carried out according to the GLP principles (Directive 2004/10/EC) or other international standards recognised by the Commission or ECHA.
- (3) Under Article 10(a)(vi) and (vii) of REACH, all new data generated as a result of this decision must be reported as study summaries, or as robust study summaries, if required under Annex I of REACH. See ECHA Practical Guide on How to report robust study summaries².

1.2. Test material

Before generating new data, you must agree within the joint submission on the chemical composition of the material to be tested (Test Material) which must be relevant for all the registrants of the Substance.

- (1) Selection of the Test material(s)
 - The Test Material used to generate the new data must be selected taking into account the following:
 - the variation in compositions reported by all members of the joint submission,
 - the boundary composition(s) of the Substance,
 - the impact of each constituent/ impurity on the test results for the endpoint to be assessed. For example, if a constituent/ impurity of the Substance is known to have an impact on (eco)toxicity, the selected Test Material must contain that constituent/ impurity.
- (2) Information on the Test Material needed in the updated dossier
 - You must report the composition of the Test Material selected for each study, under the "Test material information" section, for each respective endpoint study record in IUCLID.
 - The reported composition must include all constituents of each Test Material and their concentration values and other parameters relevant for the property to be tested.

This information is needed to assess whether the Test Material is relevant for the Substance and whether it is suitable for use by all members of the joint submission.

Technical instructions on how to report the above is available in the manual on How to prepare registration and PPORD dossiers³.

² <u>https://echa.europa.eu/practical-guides</u>

³ https://echa.europa.eu/manuals

2. General recommendations for conducting and reporting new tests

2.1. Strategy for the PBT/vPvB assessment

Under Annex XIII, the information must be based on data obtained under conditions relevant for the PBT/vPvB assessment. You must assess the PBT properties of each relevant constituent of the Substance present in concentrations at or above 0.1% (w/w) and of all relevant transformation/degradation products. Alternatively, you would have to justify why you consider these not relevant for the PBT/vPvB assessment.

You are advised to consult Guidance on IRs & CSA, Sections R.7.9, R.7.10 and R.11 on PBT assessment to determine the sequence of the tests needed to reach the conclusion on PBT/vPvB. The guidance provides advice on 1) integrated testing strategies (ITS) for the P, B and T assessments and 2) the interpretation of results in concluding whether the Substance fulfils the PBT/vPvB criteria of Annex XIII.

In particular, you are advised to first conclude whether the Substance fulfils the Annex XIII criteria for P and vP, and then continue with the assessment for bioaccumulation. When determining the sequence of simulation degradation testing you are advised to consider the intrinsic properties of the Substance, its identified uses and release patterns as these could significantly influence the environmental fate of the Substance. You must revise your PBT assessment when the new information is available.

References to Guidance on REACH and other supporting documents can be found in Appendix 1.