
Document IIIA, Section A7.1-7.3

RMS Sweden

air

Iodine

Section A7.3.2/01-02 Fate and behaviour in air, further studies

Document IIIA, Section A7.1-7.3

RMS Sweden

4.3

4.4

Transfer into surfce water and

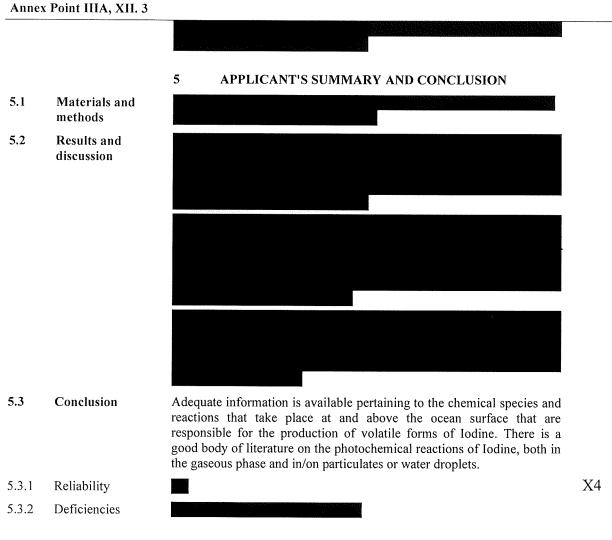
Impact on global

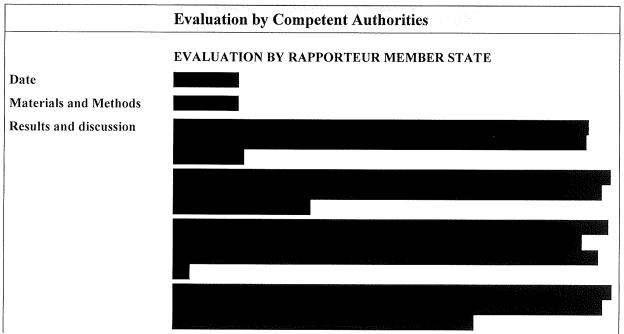
soils

rain

Iodine

Section A7.3.2/01-02 Fate and behaviour in air, further studies Annex Point IIIA, XII. 3


Biocidal active substance:


Document IIIA, Section A7.1-7.3

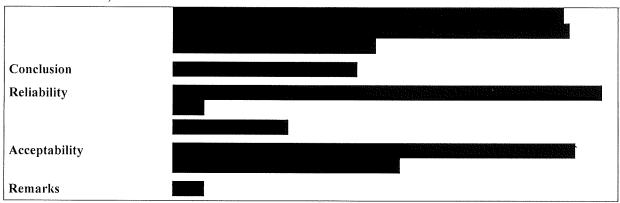
RMS Sweden

Iodine

Section A7.3.2/01-02 Fate and behaviour in air, further studies

Iodine Registration Group (IRG)	Iodine	Registration	Group	(IRG)
---------------------------------	--------	--------------	-------	-------

Biocidal active substance:


Document IIIA, Section A7.1-7.3

RMS Sweden

Iodine

Section A7.3.2/01-02 Fate and behaviour in air, further studies

Annex Point IIIA, XII. 3

Competent Authority Report

Work Programme for Review of Active Substances in Biocidal Products Pursuant to Council Directive 98/8/EC

IODINE (PT1, PT3, PT4, PT22)

DOCUMENT III-A 7.4-7.6

Ecotoxicology

Rapporteur Member State: Sweden

Draft Final May 2013

RMS Sweden

I	n	d	e	X	:

Section A7.4.1.1	4
Acute toxicity to fish	4
Section A7.4.1.2	13
Acute toxicity to invertebrates	13
Section A7.4.1.3	24
Growth inhibition test on algae	24
Section A7.4.1.4	33
Inhibition to microbial activity	33
Section A7.4.2	40
Bioconcentration in aquatic organisms	40
Section A7.4.3 Section A7.4.3.1-7.4.3.5.1	42
Effects on aquatic organisms, further studies	42
Section A7.4.3.2/01	43
Effects on reproduction and growth rate of fish	43
Section A7.4.3.2/02	50
Effects on reproduction and growth rate of fish	50
Section A7.5.1.1	57
Inhibition to microbial activity (terrestrial)	57
Section A7.5.1.2	69
Earthworm, acute toxicity test	69
Section 7.5.1.3	79
Acute toxicity to terrestrial plants	79
Section A7.5.2	<i>9</i> 5
Terrestrial tests, long-term tests	95
Section A7.5.3-01 (PT 3)	96
Effects on birds	96
Section A7.5.3-02 (PT 22)	97
Effects on birds	97
Section A7.5.3-03 (PT 1)	98
Effects on birds	98
Section A7.5.4.1	99
Acute toxicity to honeybees and other beneficial arthropods	99
Section A7.5.5/01-02	100

Iodine l	Registration	Group ((IRG))
----------	--------------	---------	-------	---

Biocidal active substance:

Document IIIA, Section A7.4-7.6

RMS Sweden

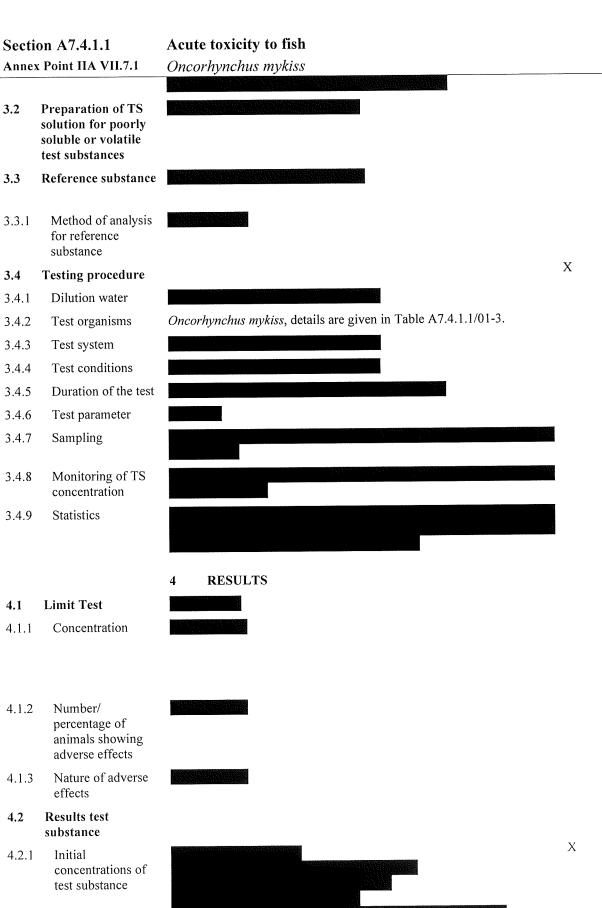
Bioconcentration in terrestrial organisms	100
Section A7.5.5.1	103
Bioconcentration, further studies	
Section A7.5.6	
Effects on other terrestrial non-target organisms	104
Section A7.5.7	
Effects on mammals	
Section A7.6/01-10	106
Summary of ecotoxicological effects and fate and behaviour in the environment	

Iodine Registration Group (IRG) Biocidal active substance: Document IIIA, Section A7.4-7.6 RMS Sweden **Iodine** Acute toxicity to fish **Section A7.4.1.1 Annex Point IIA VII.7.1** Oncorhynchus mykiss Official use only 1 REFERENCE Laverock, M.J., Stephenson, M., Macdonald, C.R., Arch. Environ. 1.1 Reference Contam. Toxicol., 29, 344-350 (1995): Toxicity of Iodine, Iodide, and Iodate to Daphnia magna and Rainbow Trout (Oncorhynchus mykiss); Doc. No. 892-002 (publication); Section A7.4.1.1/01 1.2 Data protection 1.2.1 Data owner 1.2.2 Companies with letter of access 1.2.3 Criteria for data protection GUIDELINES AND QUALITY ASSURANCE 2.1 Guideline study Not indicated GLP 2.2 2.3 **Deviations** MATERIALS AND METHODS Iodide 3.1 Test material Iodate Iodine 3.1.1 Lot/Batch number Specification 3.1.2 3.1.3 Purity 3.1.4 Description of test substance 3.1.5 Composition of Product 3.1.6 Further relevant

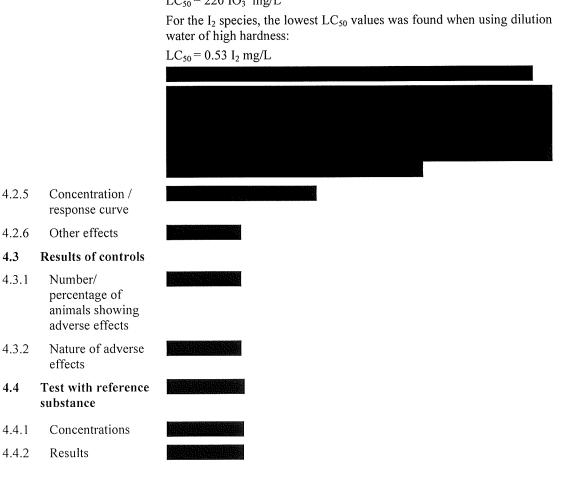
properties

Method of analysis

3.1.7


Iodine Registration Group (IRG)

Biocidal active substance:


Document IIIA,
Section A7.4-7.6

RMS Sweden

Iodine

Document IIIA, Biocidal active substance: Iodine Registration Group (IRG) Section A7.4-7.6 **Iodine** RMS Sweden Acute toxicity to fish **Section A7.4.1.1 Annex Point IIA VII.7.1** Oncorhynchus mykiss 4.2.2 Actual concentrations of test substance 4.2.3 Comparison of final to initial concentrations X Effect data 4.2.4 (Mortality) the following LC50 values for Oncorhynchus mykiss were derived: $LC_{50} = 3780 \text{ I} \text{ mg/L}$ $LC_{50} = 350 IO_3 mg/L$ $LC_{50} = 1.67 I_2 mg/L$ Oncorhnychus mykiss For the I and IO3 species, the lowest LC50 values were found when using dilution water of low hardness: $LC_{50} = 860 \text{ I} \text{ mg/L}$ $LC_{50} = 220 \text{ IO}_3 \text{ mg/L}$ For the I₂ species, the lowest LC₅₀ values was found when using dilution water of high hardness: $LC_{50} = 0.53 I_2 mg/L$ 4.2.5 Concentration / response curve 4.2.6 Other effects 4.3 Results of controls 4.3.1 Number/

Biocidal active substance:

Document IIIA, Section A7.4-7.6

RMS Sweden

Iodine

Section A7.4.1.1 Acute toxicity to fish Annex Point IIA VII.7.1 Oncorhynchus mykiss

5 APPLICANT'S SUMMARY AND CONCLUSION

5.1 Materials and methods

The testing of acute toxicity of Iodine species iodide (Γ), iodate (IO_3), and elemental Iodine (I_2) in *Oncorhynchus mykiss* was conducted over 96-h (static) using seven different kind of dilution waters (standard of medium hardness, low chloride content, and low TOC; soft and hard; medium and high chloride content; medium and high TOC). The design basically followed OECD 203.

5.2 Results and discussion

5.2.1 LC₅₀

1: 3780 mg/L (96 hours, in standard / culture water)

IO₃: 220 mg/L (96 hours in standard / culture water)

I₂: 1.67 mg/L (96 hours in standard / culture water)

5.2.2 Other results

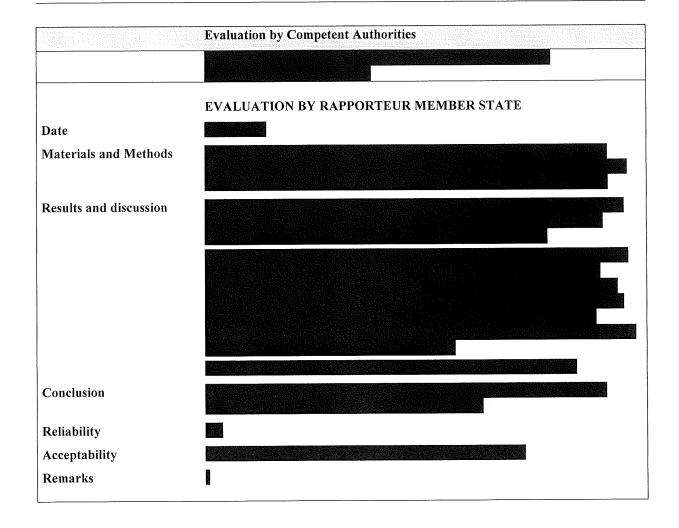
5.3 Conclusion

Most of the validity criteria were fulfilled. The deficiencies (see 5.3.3) were compensated by the multitude of tests in different dilution waters.

The EC $_{50}$ values in standard water were calculated to be 3780 mg/L for iodide, 220 mg/L for iodate, and 1.67 mg/L for elemental Iodine (all based on mean measured values).

- 5.3.1 Other Conclusions
- 5.3.2 Reliability
- 5.3.3 Deficiencies

Biocidal active substance:


Document IIIA, Section A7.4-7.6

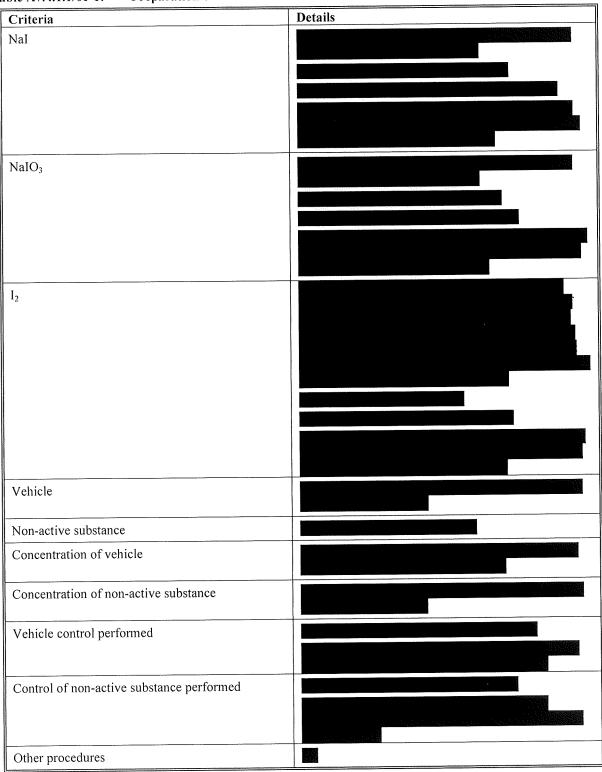
RMS Sweden

Iodine

Section A7.4.1.1
Annex Point IIA VII.7.1

Acute toxicity to fish Oncorhynchus mykiss

RMS Sweden


Iodine

Section A7.4.1.1

Acute toxicity to fish Oncorhynchus mykiss

Annex Point IIA VII.7.1

Table A7.4.1.1/01-1: Preparation of Iodine test solution

Biocidal active substance:

Document IIIA, Section A7.4-7.6

RMS Sweden

Iodine

Section A7.4.1.1

Acute toxicity to fish Oncorhynchus mykiss

Annex Point IIA VII.7.1

Table A7.4.1.1/01-2: **Dilution waters**

Criteria	Details
Number of differing dilution waters	
Source	
Preparation	
Alkalinity (as CaCO ₃)	
Hardness (as CaCO ₃)	
рН	
Oxygen content	
Conductance	
Control analysis	
Culture water different from dilution water	

Iodine Registration Group (IRG) Biocidal active substance:

RMS Sweden Io

Iodine

Document IIIA, Section A7.4-7.6

Section A7.4.1.1

Acute toxicity to fish

Annex Point IIA VII.7.1

Oncorhynchus mykiss

Table A7.4.1.1/01-3: Test organisms

Criteria	Details
Species	Oncorhynchus mykiss
Source	Certified disease-free commercial hatcheries (not specified)
Wild caught	
Weight / length	
Kind of food	
Amount of food	
Feeding frequency	
Pretreatment	
Feeding of animals during test	

Table A7.4.1.1/01-4: Test system

Criteria	Details
Test type	
Renewal of test solution	
Volume of test vessels	
Volume/animal	
Number of animals/vessel	
Number of vessels/ concentration	
Test performed in closed vessels due to significant volatility of TS	

Table A7.4.1.1/01-5: Test conditions

Criteria	Details
Test temperature	
Dissolved oxygen	
pH	
Adjustment of pH	
Aeration of dilution water	
Intensity of irradiation	
Photoperiod	

Page 12 of 120

Biocidal active substance: Iodine Registration Group (IRG)

Document IIIA, Section A7.4-7.6

Iodine

RMS Sweden

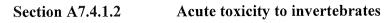

Effect data

Table A7.	Table A7.4.1.1/01-6: Effect data		***************************************				
Criteria ^a	Me	Median lethal toxic concentration (LC ₅₀) of Iodine species in mg/L to Oncorhynchus mykiss (95% confidence ranges in brackets) All LC ₅₀ values were calculated using the Spearman-Karber method	nal toxic concentration (LC ₅₀) of Iodine species in mg/L to <i>Oncorhync</i> (95% confidence ranges in brackets) All LC ₅₀ values were calculated using the Spearman-Karber method	tration (LC ₅₀) of Iodine species in mg/(95% confidence ranges in brackets) were calculated using the Spearman-	L to <i>Oncorhynchus</i> Karber method	mykiss	
	and the state of t		Dilutio	Dilution water			
	(1.) Standard	(2.) Soft	(3.) Hard	(4.) Medium Cl	(5.) High Cl	(6.) Medium TOC	(7.) High TOC
1,	3780 (2730-5230)	860 1)	8230 (6300-12400)	4500 (3730-5440)	5480 (3000-10000)	2800 (1900-4200)	4560 (3280-6350)
IO ₃ -	350 (250-490)	220 (160-310)	280 (190-400)	320 (230-450)	340 (240-480)	420 (300-600)	420 (300-600)
I ₂	1.67 (1.51-1.84)	4.19 (4.02-4.37)	0.53 (0.48-0.58)	1.73 (1.0-3.0)	1.73 (1.0-3.0)	4.2 (3.0-6.0)	> 10 ¹)

confidence range not calculated

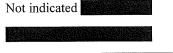
RMS Sweden

Iodine

Annex Point IIA, VII.7.2 Daphnia magna

1 REFERENCE

Official use only


1.1 Reference

Laverock, M.J., Stephenson, M., Macdonald, C.R., Arch. Environ. Contam. Toxicol., 29, 344-350 (1995): Toxicity of Iodine, Iodide, and Iodate to *Daphnia magna* and Rainbow Trout (*Oncorhynchus mykiss*); Doc. No. 892-002 (publication); A7.4.1.2/01.

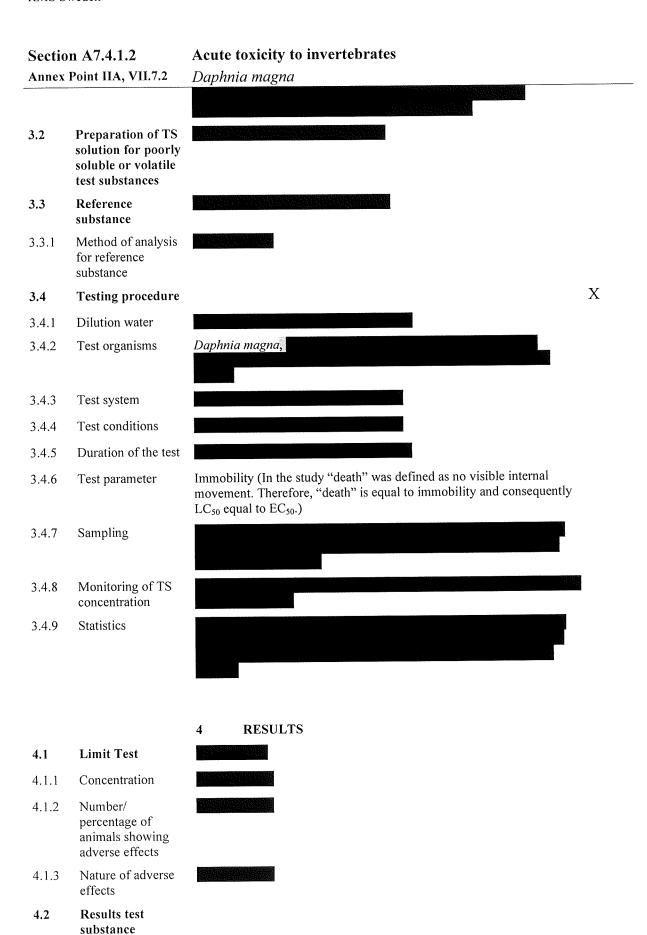
- 1.2 Data protection
- 1.2.1 Data owner
- 1.2.2 Companies with letter of access
- 1.2.3 Criteria for data protection

2 GUIDELINES AND QUALITY ASSURANCE

- 2.1 Guideline study
- 2.2 GLP
- 2.3 Deviations

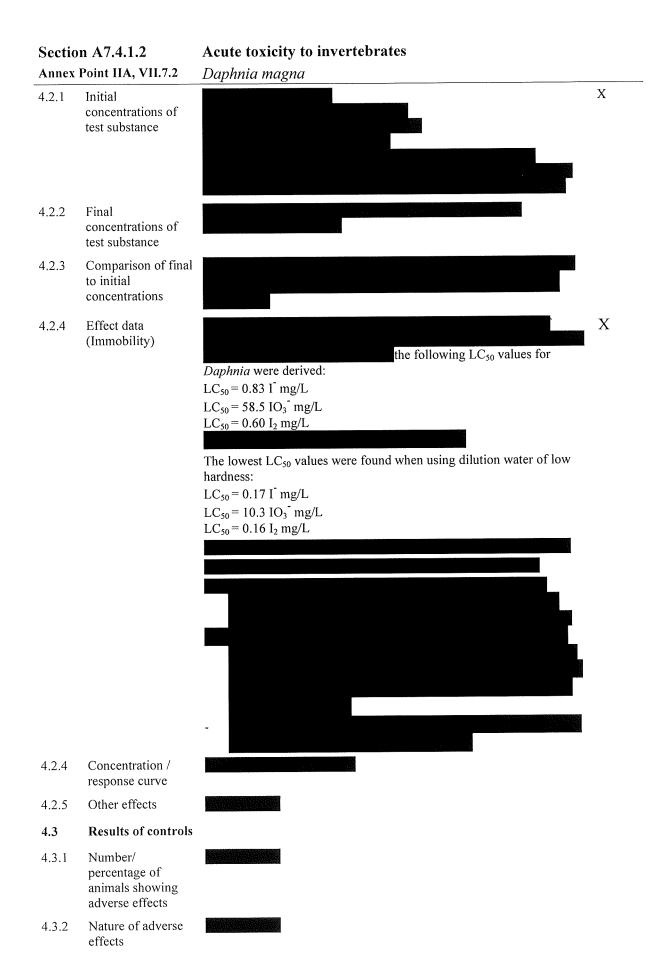
MATERIAL AND METHODS

3.1 Test material


- 3.1.1 Lot/Batch number
- 3.1.2 Specification
- 3.1.3 Purity
- 3.1.4 Description of test substance
- 3.1.5 Composition of Product
- 3.1.6 Further relevant properties
- 3.1.7 Method of analysis

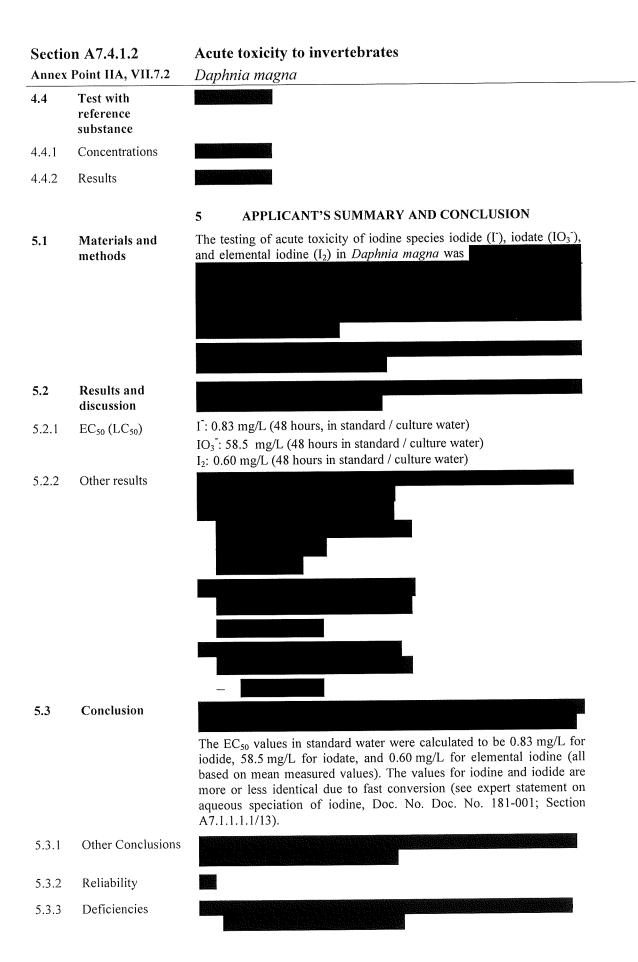
Biocidal active substance:

Document IIIA, Section A7.4-7.6


RMS Sweden

Biocidal active substance:

Document IIIA, Section A7.4-7.6


RMS Sweden

Biocidal active substance:

Document IIIA, Section A7.4-7.6

RMS Sweden

Biocidal active substance:

Document IIIA, Section A7.4-7.6

RMS Sweden

Iodine

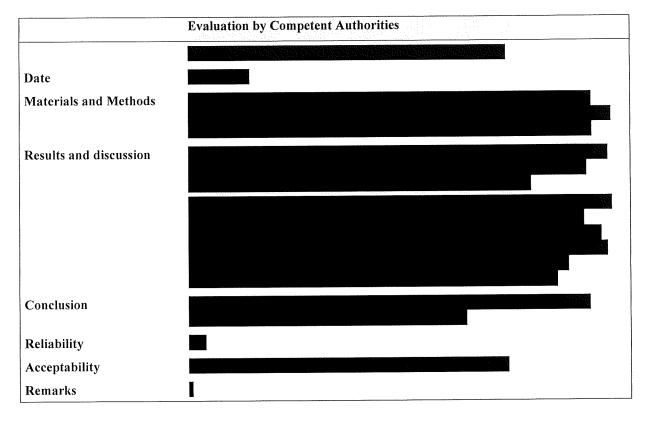
Section A7.4.1.2

Acute toxicity to invertebrates

Annex Point IIA, VII.7.2

Biocidal active substance:

Document IIIA, Section A7.4-7.6


RMS Sweden

Iodine

Section A7.4.1.2

Acute toxicity to invertebrates

Annex Point IIA, VII.7.2

Biocidal active substance:

Document IIIA, Section A7.4-7.6

RMS Sweden

Iodine

Section A7.4.1.2 Acute to

Acute toxicity to invertebrates

Annex Point IIA, VII.7.2

able A7.4.1.2/01-1: Preparation of iodine to	
Criteria	Details
NaI	
NaIO ₃	
114103	
I_2	
Vehicle	
Non-active substance	
Concentration of vehicle	
Concentration of non-active substance	
Vehicle control performed	
Control of your active substance montaneed	
Control of non-active substance performed	
Other procedures	

Biocidal active substance:

Document IIIA, Section A7.4-7.6

RMS Sweden

Iodine

Section A7.4.1.2

Acute toxicity to invertebrates

Annex Point IIA, VII.7.2

Table A7.4.1.2/01-2.1: Dilution waters

Criteria	Details
Number of differing dilution waters	I
Source	
Preparation	
Alkalinity (as CaCO ₃)	
Hardness (as CaCO ₃)	
рН	
Oxygen content	
Conductance	
Control analysis	
Culture water different from dilution water	

Biocidal active substance:

Document IIIA, Section A7.4-7.6

RMS Sweden

Iodine

Section A7.4.1.2

Acute toxicity to invertebrates

Annex Point IIA, VII.7.2

Table A7.4.1.2/01-3.1: Test organisms

Criteria	Details
Species	Daphnia magna
Source	Stocks of Daphnia magna
Age	
Kind of food	
Amount of food	
Feeding frequency	
Pretreatment	
Feeding of animals during test	

Biocidal active substance:

Document IIIA, Section A7.4-7.6

RMS Sweden

Iodine

Section A7.4.1.2

Acute toxicity to invertebrates

Annex Point IIA, VII.7.2

Table A7.4.1.2/01-3.2: Culture water for raising *Daphnia magna* a

Criteria	Details
Source	
Alkalinity (as CaCO ₃)	
Hardness (as CaCO ₃)	
рН	
Dissolved oxygen	
Conductivity	

Table A7.4.1.2/01-4: Test system

Criteria	Details
Test type	
Renewal of test solution	
Volume of test vessels / test solution	
Volume/animal/day	
Number of animals/vessel	
Number of vessels/ concentration	
Test performed in closed vessels due to significant volatility of TS	

Table A7.4.1.2/01-5: Test conditions

Criteria	Details
Test temperature	
Dissolved oxygen	
pН	
Adjustment to replace the loss of active substance / test solution during the test period	
Adjustment of pH	
Aeration of dilution water	
Quality/Intensity of irradiation	
Light-control	

Biocidal active substance: Iodine Registration Group (IRG)

Document IIIA, Section A7.4-7.6

Iodine

RMS Sweden

Section A7.4.1.2

Acute toxicity to invertebrates Daphnia magna

Annex Point IIA, VII.7.2

Effect data Table A7.4.1.2/01-6:

	2	edian lethal toxic c	oncentration (LC50)	of iodine species in r	Median lethal toxic concentration (LC50) of iodine species in mg/L to Daphnia magna	gna	
		All LC ₅₀ valu	(95% confidence es were calculated u	(95% confidence ranges in Drackets) values were calculated using the Spearman-Karber method	Karber method		
			Diluti	Dilution water			
(1.) Standard	L	(2.) Soft	(3.) Hard	(4.) Medium CI	(5.) High CI	(6.) Medium TOC	(7.) High TOC
0.83 (0.68 ± 1.01)	<u> </u>	0.17 (0.16 ± 0.18)	0.78 (0.60 ± 1.00)	0.23 (0.15 ± 0.35)	$0.17 \\ (0.10 \pm 0.30)$	0.78 (0.59 ± 1.18)	0.43 (0.39 ± 0.48)
58.5 (50.7 ± 67.7)	= 0	$10.3 (0.3 \pm 334.0)$	54.8 (30.0 ± 100.0)	58.7 (47.9 ± 71.8)	129 (83 ± 199)	54.8 (30.0 ± 100.0)	54.9 (47.7 ± 63.2)
$\begin{array}{c} 0.59 \\ (0.51 \pm 0.68) \end{array}$	⊝ ⊝	0.16 (0.14 ± 0.19)	0.55 (0.30 ± 1.00)	1.75 (1.54 ± 1.99)	1.73 (1.00 ± 3.00)	0.85 (0.55 ± 1.32)	0.59 (0.51 ± 0.68)

Biocidal active substance:

Document IIIA. Section A7.4-7.6

RMS Sweden

Iodine

Growth inhibition test on algae **Section A7.4.1.3**

Annex Point IIA, VII.7.3

Official use only

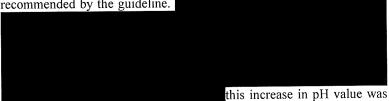
REFERENCE 1

1.1 Reference Mead, C.; Mullee, D.M. (2002): Iodine - Algal inhibition test. Safepharm Laboratories Limited, report number 1580/004, report date: 07.05.2002 (unpublished).

Doc. No. 823-003; Section A7.4.1.3/01.

- Data protection 1.2
- Data owner 1.2.1

- Companies with 1.2.2 letter of access
- Criteria for data 1.2.3 protection
- GUIDELINES AND QUALITY ASSURANCE
- 2.1 Guideline study


OECD No 201(1984): Alga Growth Inhibition Test; Method C.3 of Commission Directive 92/69/EEC

2.2 **GLP**

2.3 **Deviations** The pH value of the control cultures increased from pH 7.5 to 10.3 during the exposure period, which is in excess of the 1.5 pH units

considered to have no adverse effect on the validity of the study.

recommended by the guideline.

The measured test concentration for one test concentration at time 0 was $122\ \%$ of nominal, thus exceeding the range of 80 to $120\ \%$ of nominal (please refer to Table A7.4.1.3/01-9). This was considered to have no impact on the validity or integrity of the study due to the fact that all other test concentrations were within the recommended range.

MATERIALS AND METHODS 3

Test material 3.1.1 Lot/Batch number

Specification 3.1.2

Purity 3.1.3

3.1

Description of test 3.1.4 substance

3.1.5 Composition of

As given in section 2.

Page 24 of 120

Biocidal active substance:

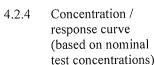
Document IIIA, Section A7.4-7.6

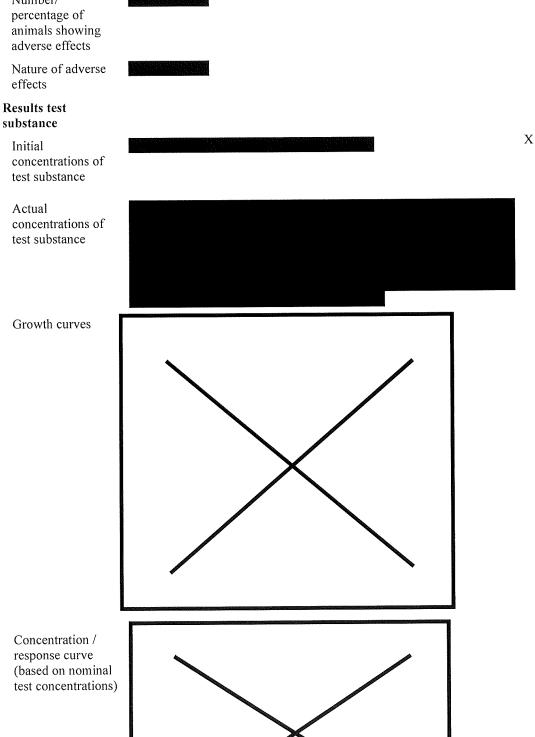
RMS Sweden

Iodine

Section A7.4.1.3 Growth inhibition test on algae

Annex Point IIA, VII.7.3 Product 3.1.6 Further relevant properties 3.1.7 Method of analysis 3.2 Preparation of TS solution for poorly soluble or volatile test substances 3.3 Reference substance Method of analysis 3.3.1 for reference substance Testing procedure 3.4 3.4.1 Dilution water The green algae Desmodesmus subspicatus (formerly named 3.4.2 Test organisms Scendesmus subspicatus; 3.4.3 Test system 3.4.4 Test conditions Duration of the test 3.4.5 Area under growth curve (AUC) and growth rate calculated from cell 3.4.6 Test parameter densities. X 3.4.7 Sampling 3.4.8 Monitoring of TS concentration Statistics 3.4.9 **RESULTS Limit Test** 4.1 4.1.1 Concentration


RMS Sweden


Iodine

Growth inhibition test on algae **Section A7.4.1.3**

Annex Point IIA, VII.7.3

- 4.1.2 Number/ percentage of animals showing adverse effects
- 4.1.3
- 4.2 substance
- Initial 4.2.1 concentrations of
- 4.2.2 concentrations of test substance
- 4.2.3

Page 26 of 120

Biocidal active substance:

Document IIIA, Section A7.4-7.6

RMS Sweden

Iodine

Section A7.4.1.3 Growth inhibition test on algae

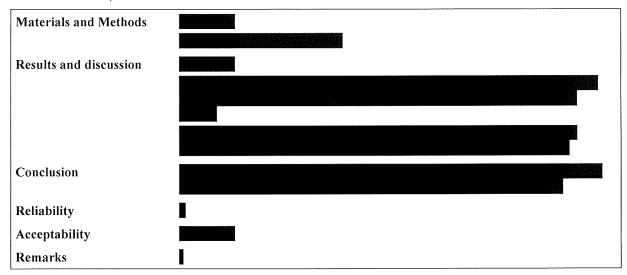
Annex Point IIA, VII.7.3 Cell concentration 4.2.5 date 4.2.6 Effect data 4.2.7 Other effects 4.3 Results of controls 4.3.1 Nature of adverse effects 4.4 Test with reference substance 4.4.1 Concentrations 4.4.2 Results APPLICANT'S SUMMARY AND CONCLUSION The test was conducted according to OECD No 201(1984). It is a static Materials and 5.1 test-system and Desmodesmus subspicatus (formerly methods Scendesmus subspicatus) was used as a test organism. 5.2 Results and discussion 0.20 mg/L (based on nominal concentrations) 5.2.1 NOEC (72 hours) 0.62 mg/L (based on nominal concentrations) 5.2.1 E_bC_{50} (72 h) 1.3 mg/L (based on nominal concentrations) E_rC_{50} (0-72 h) 5.2.2 Conclusion 5.3 the EC₅₀ (cell numbers) X The NOEC (cell numbers) was calculated to be 0.16 mg/L was determined to be 0.061 mg/L Other Conclusions 5.3.1 5.3.2 Reliability Minor deviations to the test guideline (for details, please refer to 2.3) 5.3.3 Deficiencies occurred that are considered to have no impact on the validity or

	Evaluation by Competent Authorities
	EVALUATION BY RAPPORTEUR MEMBER STATE
Date	

integrity of the study.

Iodine Registration Group (IRG)

Biocidal active substance:


Document IIIA,
Section A7.4-7.6

RMS Sweden

Iodine

Section A7.4.1.3 Growth inhibition test on algae

Annex Point IIA, VII.7.3

Biocidal active substance:

Document IIIA, Section A7.4-7.6

RMS Sweden

Iodine

Section A7.4.1.3 Growth inhibition test on algae

Annex Point IIA, VII.7.3

Table A7.4.1.3/01-1: Preparation of TS solution for poorly soluble or volatile test substances

Criteria	Details
Dispersion	
Vehicle	
Concentration of vehicle	
Vehicle control performed	
Other procedures	

Table A7.4.1.3/01-2: Culture medium (corresponding to AAP-medium described in OECD 201)

Nutrient	Concentration

Biocidal active substance:

Document IIIA, Section A7.4-7.6

RMS Sweden

Iodine

Section A7.4.1.3 Growth inhibition test on algae

Annex Point IIA, VII.7.3

Table A7.4.1.3/01-3: Test organisms

Criteria	Details
Species/strain	Desmodesmus subspicatus (formerly named Scendesmus subspicatus) / strain CCAP 276/20
Source	
Wild caught	
Growth phase at test initiation	
Culture medium	
Maintenance temperature	
Maintenance illumination	

Table A7.4.1.3/01-4: Test system

Criteria	Details
Test type	
Renewal of test solution	
Volume of test vessels	
Volume of test solution	
Cell density	
Number of vessels/ concentration	
Test performed in closed vessels due to significant volatility of TS	

Table A7.4.1.3/01-5: Test conditions

Criteria	Details
Test temperature	
рН	
Adjustment of pH	
Aeration of dilution water	
Shaking of test flasks	
Intensity of irradiation	
Photoperiod	

RMS Sweden

Iodine

Section A7.4.1.3 Growth inhibition test on algae

Annex Point IIA, VII.7.3

Table A7.4.1.3/01-6: pH values measured during the test (three replicates each)

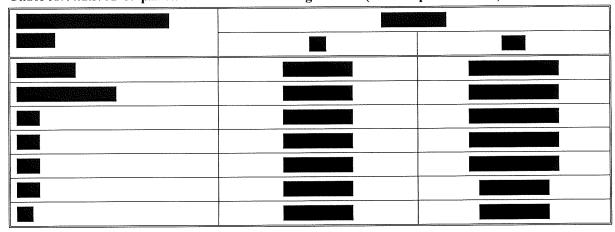
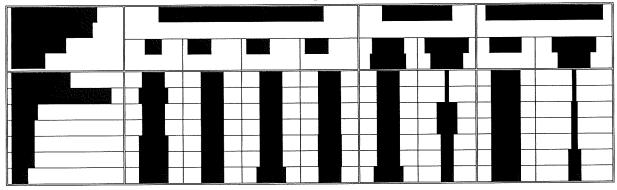



Table A7.4.1.3/01-7: Cell densities, inhibition of growth rate and area under curve (AUC) data

Table A7.4.1.3/01-8: Effect data

	E _b C ₅₀ (72 h) [mg/L]	95 % c.l. [mg/L]	E _r C ₅₀ (0-72 h) [mg/L]	95 % c.l. [mg/L]	NOEC [mg/L]
Based on nominal concentrations	0.62	0.56 – 0.68	1.3	1.1 – 1.5	0.20
Based on time- weighted mean measured concentrations	0.64	0.57 – 0.72	1.4	1.2 – 1.6	0.19

Table A7.4.1.3/01-9: Validity criteria for acute fish test according to OECD Guideline 201

Fulfilled	Not fullfilled

Biocidal active substance:

Document IIIA, Section A7.4-7.6

RMS Sweden

Iodine

Section A7.4.1.3

Growth inhibition test on algae

Annex Point IIA, VII.7.3

Table A7.4.1.3/01-10: Actual concentrations of test substance

		I		1		I

Iodine Registration Group (IRG)	Biocidal active substance:	Document IIIA
		Section A7.4-7.6

RMS Sweden Iodine

Section A7.4.1.3 Growth inhibition test on algae

Annex Point IIA, VII.7.3

Table A7.4.1.3/01-1: Preparation of TS solution for poorly soluble or volatile test substances

Criteria	Details
Dispersion	
Vehicle	
Concentration of vehicle	
Vehicle control performed	
Other procedures	

Table A7.4.1.3/01-2: Culture medium (corresponding to AAP-medium described in OECD 201)

Nutrient	Concentration

Biocidal active substance:

Document IIIA, Section A7.4-7.6

RMS Sweden

Iodine

Section A7.4.1.3 Growth inhibition test on algae

Annex Point IIA, VII.7.3

Table A7.4.1.3/01-3: Test organisms

Criteria	Details
Species/strain	Desmodesmus subspicatus (formerly named Scendesmus subspicatus) / strain CCAP 276/20
Source	
Wild caught	
Growth phase at test initiation	
Culture medium	in distribution and additional
Maintenance temperature	
Maintenance illumination	

Table A7.4.1.3/01-4: Test system

Criteria	Details
Test type	
Renewal of test solution	
Volume of test vessels	
Volume of test solution	
Cell density	
Number of vessels/ concentration	1
Test performed in closed vessels due to significant volatility of TS	

Table A7.4.1.3/01-5: Test conditions

Criteria	Details
Test temperature	
рН	
Adjustment of pH	
Aeration of dilution water	
Shaking of test flasks	
Intensity of irradiation	
Photoperiod	

Iodine

Section A7.4.1.3

Growth inhibition test on algae

Annex Point IIA, VII.7.3

Table A7.4.1.3/01-6: pH values measured during the test (three replicates each)

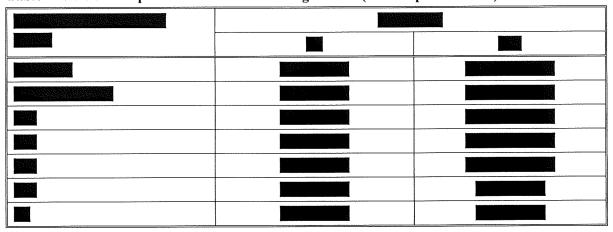
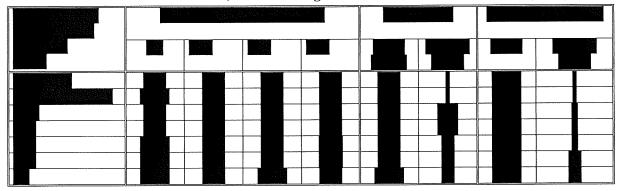



Table A7.4.1.3/01-7: Cell densities, inhibition of growth rate and area under curve (AUC) data

Table A7.4.1.3/01-8: Effect data

	E _b C ₅₀ (72 h) [mg/L]	95 % c.l. [mg/L]	E _r C ₅₀ (0-72 h) [mg/L]	95 % c.l. [mg/L]	NOEC [mg/L]
Based on nominal concentrations	0.62	0.56 - 0.68	1.3	1.1 – 1.5	0.20
Based on time- weighted mean measured concentrations	0.64	0.57 - 0.72	1.4	1.2 – 1.6	0.19

Table A7.4.1.3/01-9: Validity criteria for acute fish test according to OECD Guideline 201

Fulfilled Not fullfilled	

Biocidal active substance:

Document IIIA, Section A7.4-7.6

RMS Sweden

Iodine

Section A7.4.1.3

Growth inhibition test on algae

Annex Point IIA, VII.7.3

Table A7.4.1.3/01-10: Actual concentrations of test substance

	Kana			
		- interesting		EXERTS
2/0				

Biocidal active substance:

Document IIIA, Section A7.4-7.6

RMS Sweden

3.3.1

for

Method of analysis

reference

Iodine

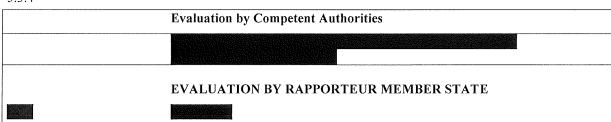
Inhibition to microbial activity **Section A7.4.1.4** Annex Point IIA, VII.7.4 Activated sludge Official use only REFERENCE 1 Mead, C., 2002, Iodine - assessment of the inhibitory effect on the 1.1 Reference respiration of activated sludge, Safepharm Laboratories Limited, report number 1580/005, report date: 07.05.2002. Doc. No. 842-001; Section A7.4.1.4/01 1.2 Data protection 1.2.1 Data owner Companies with 1.2.2 letter of access 1.2.3 Criteria for data proection **GUIDELINES AND QUALITY ASSURANCE** OECD No 209 (1984): Activated Sludge, Respiration Inhibition Test; 2.1 Guideline study EEC Commission Directive 87/302/EEC; US EPA Draft Ecological Test Guidelines OPPTS 850.6800. **GLP** 2.2 **Deviations** 2.3 MATERIALS AND METHODS 3.1 Test material As given in section 2. 3.1.1 Lot/Batch number 3.1.2 Specification 3.1.3 Purity Description of test 3.1.4 substance 3.1.5 Composition of Product 3.1.6 Further relevant properties Method of analysis 3.1.7 Preparation of TS 3.2 solution for poorly soluble or volatile test substances 3.3 Reference substance

Iodine Registration Group (IRG)

Biocidal active substance:

Document IIIA,
Section A7.4-7.6

RMS Sweden


Iodine

Section A7.4.1.4 Inhibition to microbial activity Annex Point IIA, VII.7.4 Activated sludge substance 3.4 Testing procedure 3.4.1 Dilution water 3.4.2 Inoculum test organisms 3.4.3 Test system 3.4.4 Test conditions 3.4.5 Duration of the test 3.4.6 Respiration rate Test parameter 3.4.7 Analytical parameter 3.4.8 Sampling 3.4.9 Monitoring of TS concentration X 3.4.10 Controls 3.4.11 Statistics **RESULTS**

4.1 Limit Test 4.1.1 Concentration 4.1.2 Number/ percentage of animals showing adverse effects 4.1.3 Nature of adverse effects 4.2 Results test substance X

4.2 Results test substance
4.2.1 Initial concentrations of test substance
4.2.2 Actual concentrations of test substance

Iodine Registration Group (IRG) Biocidal active substance: Document IIIA, Section A7.4-7.6 RMS Sweden **Iodine Section A7.4.1.4** Inhibition to microbial activity Annex Point IIA, VII.7.4 Activated sludge 4.2.3 Concentration / response curve X Effect data 4.2.4 4.3 Results of controls 4.4 Test with reference substance 4.4.1 Concentrations 4.4.2 EC₅₀: 11 mg/L Results APPLICANT'S SUMMARY AND CONCLUSION 5.1 Materials and The test was conducted according to OECD Guideline No 209. Activated sludge from aeration stage was used. methods 5.2 Results and discussion 5.2.1 NOEC (3 hours) 320 mg/L X 5.2.1 1600 mg/L LC₅₀ (3 hours) 5.3 Conclusion - The EC₅₀ range of 5 to 30 mg/L for 3,5- Dichlorophenol. 5.3.1 Other Conclusions Reliability 5.3.2 5.3.3 Deficiencies None 5.3.4 **Evaluation by Competent Authorities**

Biocidal active substance:

Document IIIA, Section A7.4-7.6

RMS Sweden

Iodine

Section A7.4.1.4 Inhibition to microbial activity

Annex Point IIA, VII.7.4 Activated sludge

Iodine Registration Group (IR

Biocidal active substance:

Document IIIA, Section A7.4-7.6

RMS Sweden

Iodine

Section A7.4.1.4 Inhibition to microbial activity

Annex Point IIA, VII.7.4 Activated sludge

Table A7.4.1.4/01-1: Preparation of TS solution for poorly soluble or volatile test substances

Criteria	Details
Dispersion	
Vehicle	
Concentration of vehicle	
Vehicle control performed	
Other procedures	

Table A7.4.1.4/01-2 Dilution water

Criteria	Details

Biocidal active substance:

Document IIIA, Section A7.4-7.6

RMS Sweden

Iodine

Section A7.4.1.4

Inhibition to microbial activity

Annex Point IIA, VII.7.4

Activated sludge

Table A7.4.1.4/01-3 Inoculum / Test organism

Criteria	Details
Nature	Activated sludge
Species	Mixed population of activated sewage sludge microorganisms.
Strain	Details are not provided.
Source	
Sampling site	
Laboratory culture	
Method of cultivation	
Preparation of inoculum for exposure	
Pre-treatment	
Initial concentration	

Table A7.4.1.4/01-4 Test system

Criteria	Details
Culturing apparatus	
Number of culture flasks/concentration	
Aeration device	
Aeration rate	
Measuring equipment	
Test performed in closed vessels due to significant volatility of TS	

Table A7.4.1.4/01-5 Test conditions

Criteria	Details
Test duration	
Test temperature	
Irradiation	
pH (at the end of exposure period)	
Aeration of dilution water	
Adjustment of pH	
Suspended solids concentration	

Biocidal active substance:

Document IIIA, Section A7.4-7.6

RMS Sweden

Iodine

Section A7.4.1.4

Inhibition to microbial activity

Annex Point IIA, VII.7.4

Activated sludge

Table A7.4.1.4/01-6: O2 concentrations, respiration and inhibition rates of the TS

	1		
			1

Table A7.4.1.4/01-6: Validity criteria for respiration inhibition test according to OECD Guideline 209

Fulfilled	Not fulfilled
-	

Iodine

Section A7.4.2 Bioconcentration in aquatic organisms

1

Annex Point IIIA, XIII.2.3

REFERENCE

Official use only

1.1 References

- [1] U.S. Department of Health and Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry (2004): Toxicological Profile for Iodine.
 - Doc. No. 581-009 (published); Section A7.4.2/01.
- [2] Krone, C.; Kirbach. I. (2007): Expert Evaluation provided for Dossier Preparation in Accordance with Directive 98/8/EC: Occurrence, fate and behaviour of stable Iodine 127¹ in the environment including its geochemical and biochemical circulation and possible effects on global warming and contribution to acid rain.

Doc. No. 781-004; Section A7.4.2/02.

1.2 Data protection

- 1.2.1 Data owner
- 1.2.2 Companies with letter of access
- 1.2.3 Criteria for data protection

GUIDELINES AND QUALITY ASSURANCE

- 2.1 Guideline study
- dy Not applicable.
- 2.2 GLP
- 2.3 Deviations

3 MATERIALS AND METHODS

3.1 Test material

4 RESULTS

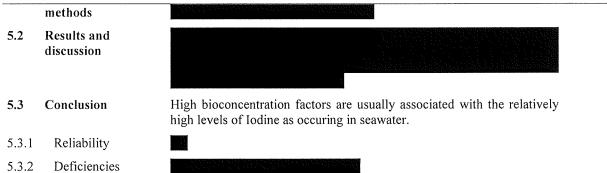
4.1 Bioconcentration in fish

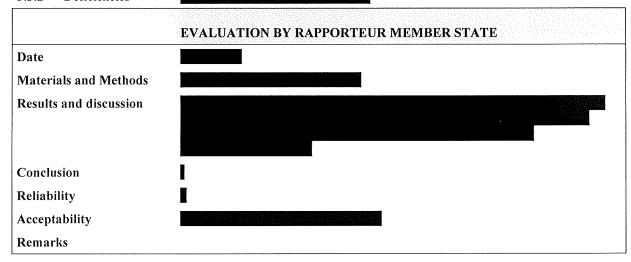
- 4.2 Bioconcentration in aquatic invertebrates
- 4.3 Bioconcentration in aquatic plants

5 APPLICANT'S SUMMARY AND CONCLUSION

5.1 Materials and

Biocidal active substance:


Document IIIA, Section A7.4-7.6


RMS Sweden

Iodine

Section A7.4.2 Bioconcentration in aquatic organisms

Annex Point IIIA, XIII.2.3

Biocidal active substance:

Document IIIA, Section A7.4-7.6

RMS Sweden

Iodine

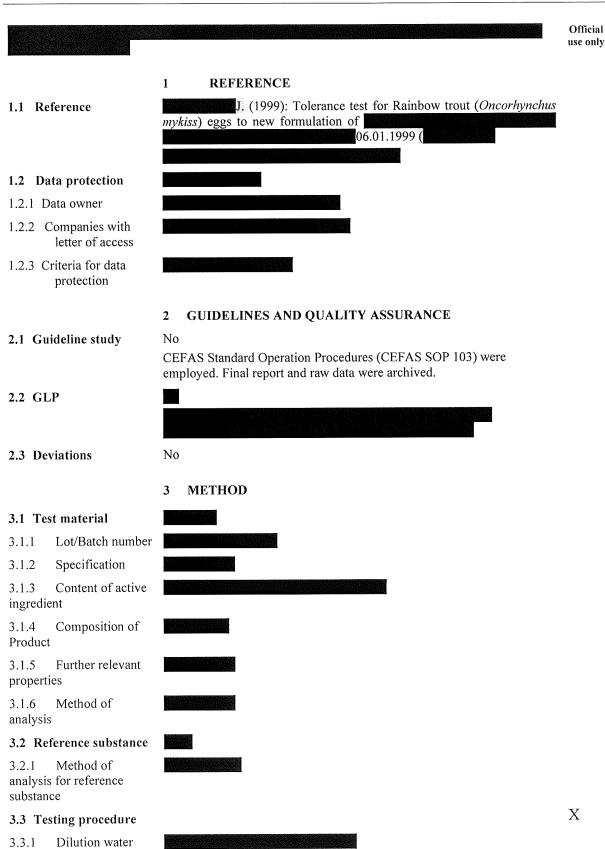
Section A7.4.3 Section A7.4.3.1-7.4.3.5.1 Effects on aquatic organisms, further studies

Annex Point IIIA, XIII.2

	JUSTIFICATION FOR NON-SUBMISSION OF DATA	Official use only
Other existing data []	Technically not feasible [] Scientifically unjustified [X]	
Limited exposure []	Other justification [X]	
Detailed justification:		

	EVALUATION BY RAPPORTEUR MEMBER STATE
Date	
Evaluation of applicant's justification	
Conclusion	
Remarks	

Biocidal active substance:


Document IIIA, Section A7.4-7.6

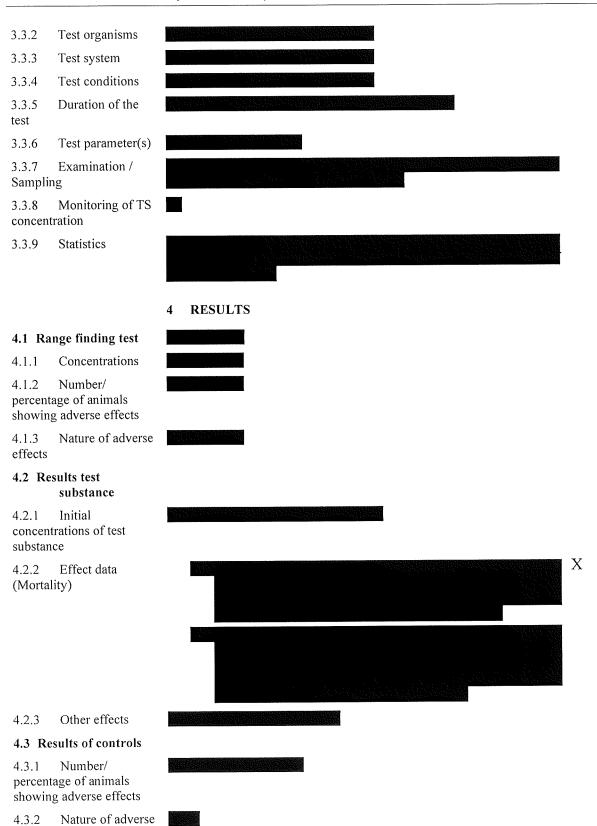
RMS Sweden

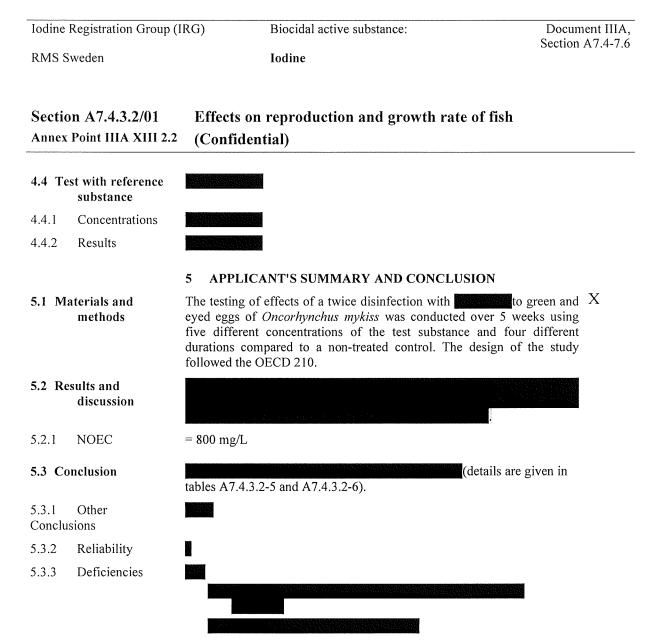
Iodine

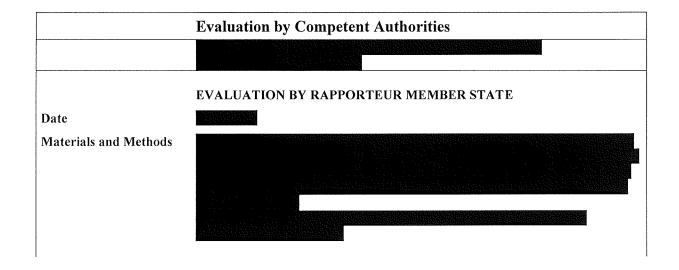
Section A7.4.3.2/01 Effects on reproduction and growth rate of fish

Annex Point IIIA XIII 2.2 (Confidential)

Biocidal active substance:

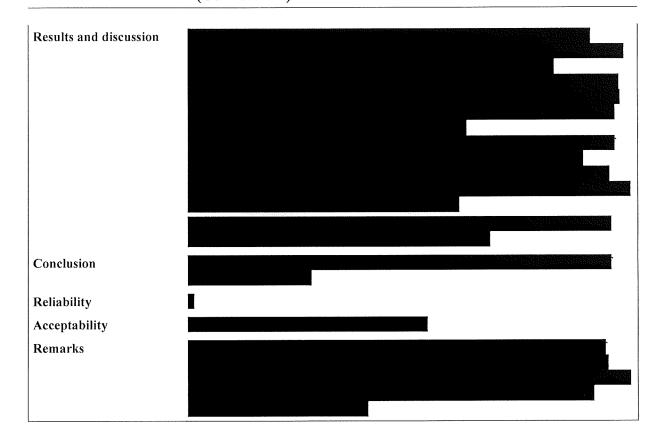

Document IIIA, Section A7.4-7.6


RMS Sweden


effects

Iodine

Section A7.4.3.2/01 Effects on reproduction and growth rate of fish Annex Point IIIA XIII 2.2 (Confidential)


Biocidal active substance:

Document IIIA, Section A7.4-7.6

RMS Sweden

Iodine

Section A7.4.3.2/01 Effects on reproduction and growth rate of fish Annex Point IIIA XIII 2.2 (Confidential)

Iodine Registration Group (IRG)	Biocidal active substance:	Document II
		Section A7.4-
RMS Sweden	Iodine	

Section 7.4.3.2/01 Effects on reproduction and growth rate of fish

Annex Point IIIA XIII 2.2

Table A7.4.3.2/01-1: Dilution water

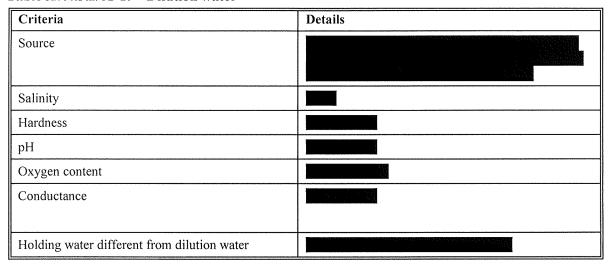


Table A7.4.3.2/01-2: Test organisms

Criteria	Details
Species/strain	Eggs of Rainbow trout (Oncorhynchus mykiss)
Source	
Wild caught	
Age/size	
Treatment for disease within 2 weeks preceding test	

Table A7.4.3.2/01-3: Test system

Criteria	Details
Test type	
Renewal of test solution	
Volume of test vessels	
Volume/animal	
Number of animals/vessel	
Number of vessels/ concentration	
Test performed in closed vessels due to significant volatility of TS	

Iodine Registration Group (IRG)	Biocidal active substance:	Document IIIA,
,		Section A7.4-7.6
RMS Sweden	Indine	

Section 7.4.3.2/01 Effects on reproduction and growth rate of fish Annex Point IIIA XIII 2.2

Table A7.4.3.2/01-4: Test conditions

Criteria	Details
Test temperature	
Dissolved oxygen	
рН	
Adjustment of pH	
Aeration of dilution water	
Intensity of irradiation	
Photoperiod	

Table A7.4.3.2/01-5: Validity criteria for fish tests according to OECD Guidelines 210/212

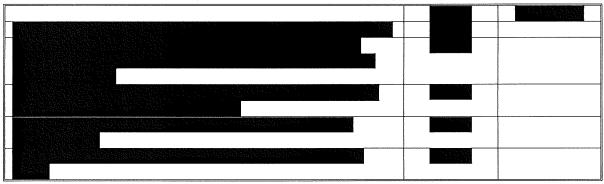
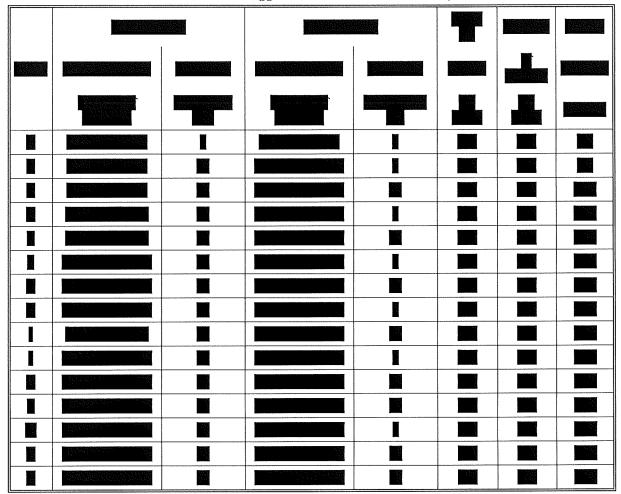


Table A7.4.3.2/01-6: Validity criteria for fish test according to OECD Guideline 215

The state of the s	TO MAKE	

Biocidal active substance:

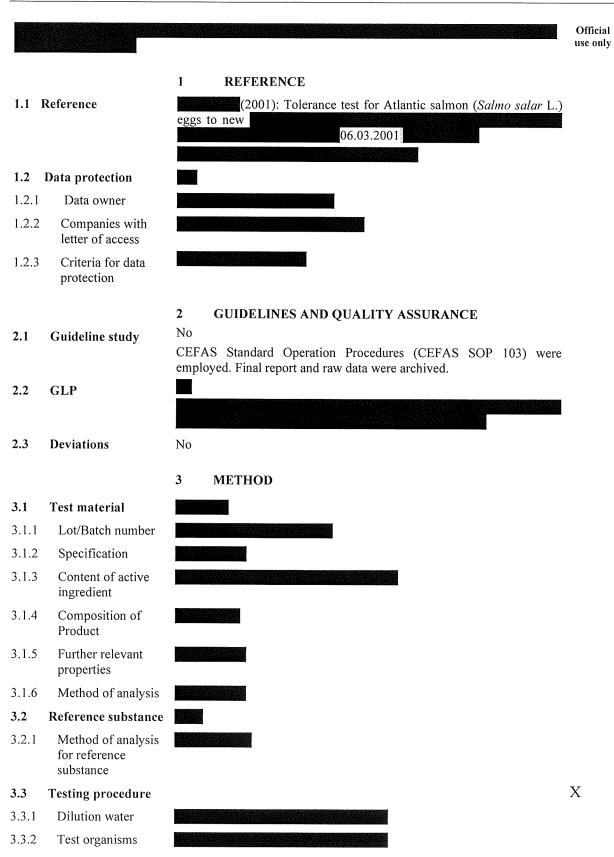

Document IIIA, Section A7.4-7.6

RMS Sweden

Iodine

Section A7.4.3.2/01 Effects on reproduction and growth rate of fish Annex Point IIIA, XIII.2.2

Table A7.4.3.2/01-7: Initial and final egg numbers – Overall mortality rates

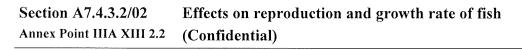

Biocidal active substance:

Document IIIA, Section A7.4-7.6

RMS Sweden

Iodine

Section A7.4.3.2/02 Effects on reproduction and growth rate of fish Annex Point IIIA XIII 2.2 (Confidential)



Biocidal active substance:

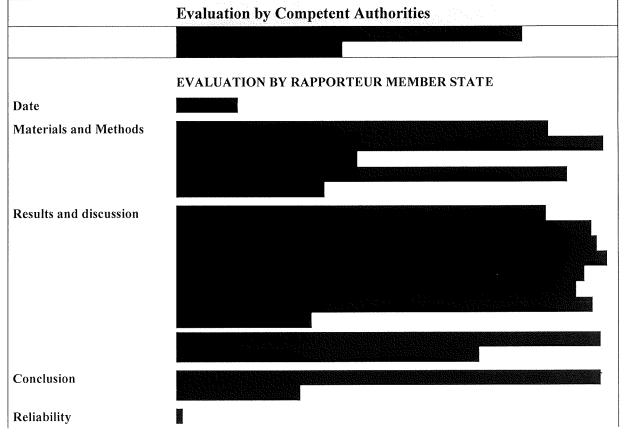
Document IIIA, Section A7.4-7.6

RMS Sweden

Iodine

Biocidal active substance:

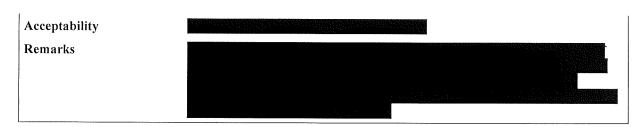
Document IIIA, Section A7.4-7.6


RMS Sweden

Iodine

Section A7.4.3.2/02 Effects on reproduction and growth rate of fish Annex Point IIIA XIII 2.2 (Confidential)

APPLICANT'S SUMMARY AND CONCLUSION to green X 5.1 Materials and The testing of effects of a twice disinfection with and eyed eggs of Salmo salar L. was conducted over 5 weeks using five methods different concentrations of the test substance and four different durations compared to a non-treated control. The design of the study followed the OECD 210. 5.2 Results and discussion the observed mortality rates were similar to the control. (details are given in 5.3 Conclusion tables A7.4.3.2/02-5 and A7.4.3.2/02-6). 5.3.1 Other Conclusions 5.3.2 Reliability 5.3.3 Deficiencies


- NOEC and EC₅₀ were not indicated

Page 52 of 120

Iodine Registration Group (IRG)	Biocidal active substance:	Document IIIA,
		Section A7.4-7.6
RMS Sweden	Iodine	

Section A7.4.3.2/02 Effects on reproduction and growth rate of fish Annex Point IIIA XIII 2.2 (Confidential)

Biocidal active substance:

Document IIIA, Section A7.4-7.6

RMS Sweden

Iodine

Section 7.4.3.2/02 Effects on reproduction and growth rate of fish

Annex Point IIIA XIII 2.2

Table A7.4.3.2/02-1: Dilution water

Criteria	Details
Source	
Salinity	
Hardness	
рН	
Oxygen content	
Conductance	
Holding water different from dilution water	

Table A7.4.3.2/02-2: Test organisms

Criteria	Details
Species/strain	Eggs of Atlantic salmon (Salmo salar L.)
Source	
Wild caught	
Age/size	
Treatment for disease within 2 weeks preceding test	

Table A7.4.3.2/02-3: Test system

Criteria	Details
Test type	
Renewal of test solution	
Volume of test vessels	
Volume/animal	
Number of animals/vessel	
Number of vessels/ concentration	
Test performed in closed vessels due to significant volatility of TS	

Iodine	Registration	Group	(IRG)

Biocidal active substance:

Document IIIA, Section A7.4-7.6

RMS Sweden

Iodine

Section 7.4.3.2/02

Effects on reproduction and growth rate of fish

Annex Point IIIA XIII 2.2

Table A7.4.3.2/02-4: Test conditions

Criteria	Details
Test temperature	
Dissolved oxygen	
рН	
Adjustment of pH	
Aeration of dilution water	
Photoperiod	
Treatment	

Table A7.4.3.2/02-5: Validity criteria for fish tests according to OECD Guidelines 210/212

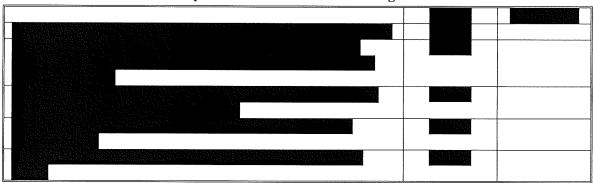


Table A7.4.3.2/2-6: Validity criteria for fish test according to OECD Guideline 215

ne en e		

Iodine

Section A7.4.3.2/02

Effects on reproduction and growth rate of fish

Annex Point IIIA, XIII.2.2

Table A7.4.3.2/02-7: Initial and final egg numbers – Overall mortality rates

		A STATE OF THE STA		
		I		
		I		
	l			
	I			
Asset Comments		I		
Mark Francisco				
William M				
EN STATE OF THE ST				
SAMMAR				
Name of the Name o				
325000000000000000000000000000000000000				

Biocidal active substance:

Document IIIA, Section A7.4-7.6

RMS Sweden

Iodine

Section A7.5.1.1 Inhibition to microbial activity (terrestrial) Annex Point IIA, VII.7.4

1 REFERENCE

Officia l use only

1.1 Reference

Schulz, L. (2009): Iodine – Effects on the activity of soil microflora (Nitrogen and carbon transformation tests); BioChem Agrar, Gerichshain, Germany; Report No. 09 10 48 024 C/N; 10.11.2009; Doc. No. 841-001 (unpublished) and

Knoch, E. (2009): Iodine –Determination of Iodine in Soils; SGS Institut Fresenius, Taunusstein, Germany; IF-09/01448579, 06.11.2009; Doc. No. 434-002 (unpublished) submitted under Section point A7.5.1/01.

1.2 Data protection

- 1.2.1 Data owner
- 1.2.2 Companies with letter of access
- 1.2.3 Criteria for data protection

2 GUIDELINES AND QUALITY ASSURANCE

2.1 Guideline study

Yes

OECD 216 (2000) and OECD 217 (2000)

2.2 GLP

2.3 Deviations

No

3 MATERIALS AND METHODS

As given in section 2

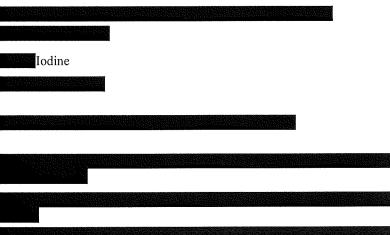
3.1 Test material

3.1.1 Lot/Batch number

3.1.2 Specification

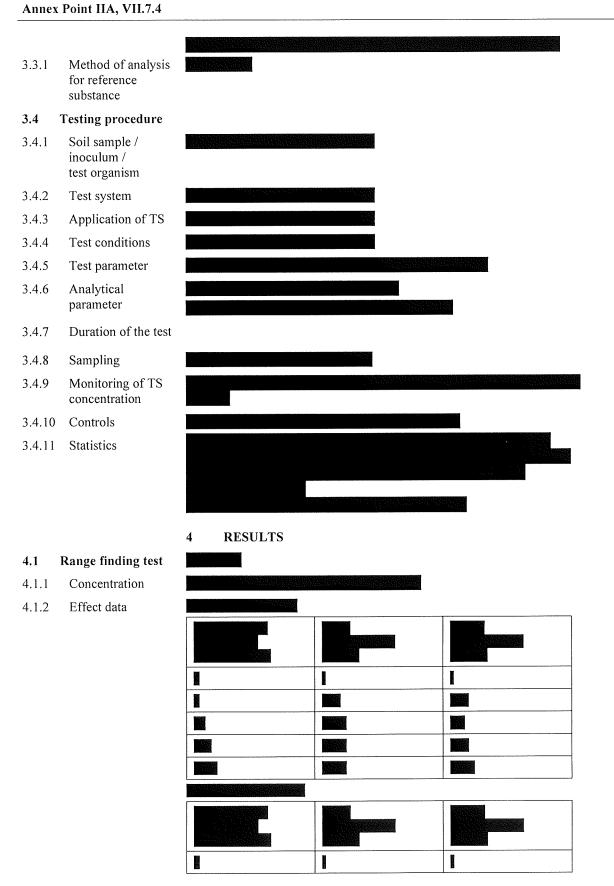
3.1.3 Purity

3.1.4 Description of test substance


3.1.5 Composition of Product

3.1.6 Further relevant properties

3.1.7 Method of analysis


3.2 Preparation of TS solution for poorly soluble or volatile test substances

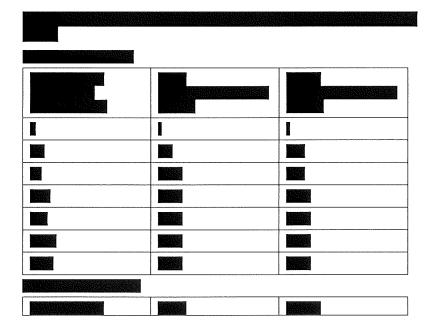
3.3 Reference substance

Iodine

Section A7.5.1.1 Inhibition to microbial activity (terrestrial)

Iodine

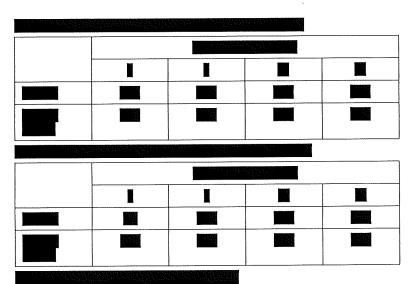
Section A7.5.1.1 Inhibition to microbial activity (terrestrial)


Annex Point IIA, VII.7.4

4.2 Results test substance

- 4.2.1 Initial concentrations of test substance
- 4.2.2 Actual concentrations of test substance

- 4.2.3 Growth curves
- 4.2.4 Cell concentration data
- 4.2.5 Concentration/ response curve
- 4.2.6 Effect data


Iodine

Section A7.5.1.1 Inhibition to microbial activity (terrestrial)
Annex Point IIA, VII.7.4

I	

4.2.7 Other observed effects

4.3 Results of controls

4.4 Test with reference substance

- 4.4.1 Concentrations
- 4.4.2 Results

Iodine

Section A7.5.1.1 Inhibition to microbial activity (terrestrial)

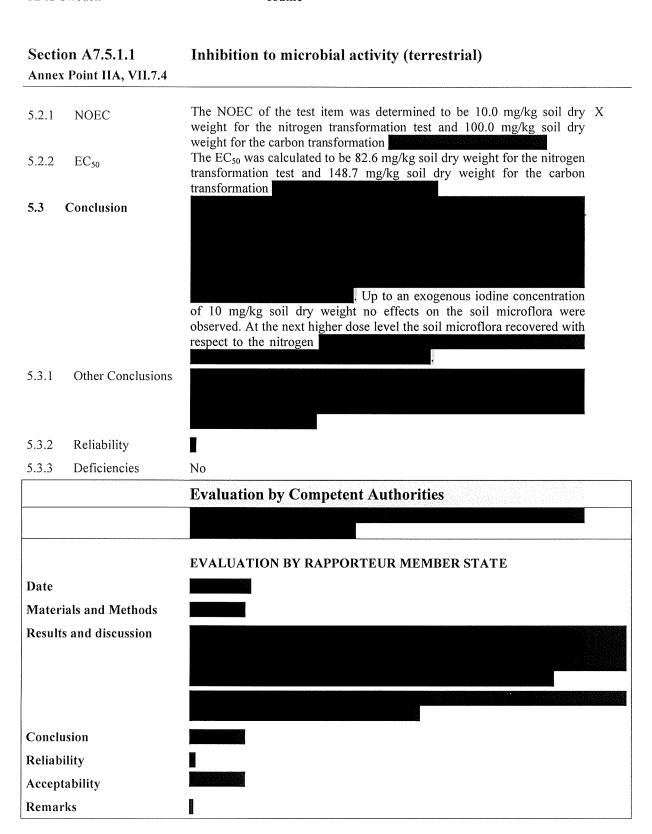
5.1 Materials and methods

Annex Point IIA, VII.7.4

5.2 Results and discussion

The test item caused a maximum inhibition of -90.2 % (nitrogen transformation) and of -92.6 % (carbon transformation) at 1000.0 mg/kg soil dry weight 28 days after application.

The NOEC of the test item was determined to be 10.0 mg/kg soil dry weight for the nitrogen transformation test and 100.0 mg/kg soil dry weight for the carbon transformation test after 28 days of exposure.


The EC $_{50}$ was calculated to be 82.6 mg/kg soil dry weight for the nitrogen transformation test and 148.7 mg/kg soil dry weight for the carbon transformation test on day 28 after application.

Biocidal active substance:

Document IIIA, Section A7.4-7.6

RMS Sweden

Iodine

Iodine

Section A7.5.1.1 Inhibition to microbial activity (terrestrial)

Annex Point IIA, VII.7.4

Table A7.5.1.1/01-1: Microbial sample / Inoculum (if applicable; include separate table for different samples)

Criteria	Details
Nature	soil sample
Sampling site:	
Geographical reference on the sampling site	
Data on the history of the site	
Use pattern	
Depth of sampling [cm]	
Sand / Silt / Clay content [% dry weight]	
рН	
Organic carbon content [% dry weight]	
Nitrogen content [% dry weight]	
Cation exchange capacity [mmol/kg]	
Initial microbial biomass	
Reference of methods	
Collection / storage of samples	

Iodine Registration Group (IRG)Biocidal active substance:Document IIIA,
Section A7.4-7.6RMS SwedenIodine

Preparation of inoculum for exposure	
Pretreatment	

Document IIIA, Section A7.4-7.6

RMS Sweden

Iodine

Section A7.5.1.1 Inhibition to microbial activity (terrestrial)

Annex Point IIA, VII.7.4

Table A7.5.1.1/01-2: Test system

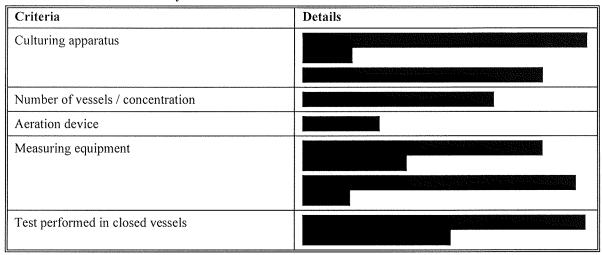


Table A7.5.1.1/01-3: Application of the test substance

Criteria	Details
Application procedure	
Carrier	
Concentration of liquid carrier [% v/v]	
Liquid carrier control	
Other procedures	

Iodine Registration Group (IRG)	Biocidal active substance:	Document IIIA,
		Section A7.4-7.6
RMS Sweden	Iodine	

Table A7.5.1.1/01-4: Test conditions

Criteria	Details
Organic substrate	
Incubation temperature	
Soil moisture	
pH of the soil	
Method of soil incubation	
Aeration	

Iodine

Section A7.5.1.1 Inhibition to microbial activity (terrestrial)

Annex Point IIA, VII.7.4

Table A7.5.1.1/01-5: Carbon Transformation Test - Effects on soil respiration (mean values)

l massial			
	Algebra de la companya della companya della companya de la companya de la companya della company		

Iodine

Section A7.5.1.1

Inhibition to microbial activity (terrestrial)

Annex Point IIA, VII.7.4

Table A7.5.1.1/01-6: Nitrogen Transformation Test - Effects on soil respiration (mean values)

able A7.5.1.1701-0. Transformation Test - Effects on som respiration (mean values)			
I			

Document IIIA, Iodine Registration Group (IRG) Biocidal active substance: Section A7.4-7.6 RMS Sweden **Iodine Section A7.5.1.2** Earthworm, acute toxicity test Annex Point IIIA, XIII.3.2 Official use only 1 REFERENCE Friedrich, S. (2009): Acute toxicity of Iodine to the earthworm Eisenia 1.1 Reference fetida; BioChem Agrar, Gerichshain, Germany; Report No. 09 10 48 022S; 10.11.2009; Doc. No. 833-001 (unpublished) and Knoch, E. (2009): Iodine -Determination of Iodine in Soils; SGS Institut Fresenius, Taunusstein, Germany; IF-09/01448579, 06.11.2009; Doc. No. 434-002 (unpublished) submitted under Section point A7.5.1/01. 1.2 Data protection 1.2.1 Data owner 1.2.2 Companies with letter of access 1.2.3 Criteria for data protection **GUIDELINES AND QUALITY ASSURANCE** Yes 2.1 Guideline study OECD 207 (1984) 2.2 GLP 2.3 Deviations **METHOD** As given in section 2 3.1 Test material 3.1.1 Lot/Batch number 3.1.2 Specification

Iodine 3.1.3 Purity Description of test 3.1.4 substance 3.1.5 Composition of Product 3.1.6 Further relevant properties Method of analysis 3.1.7 3.2 Preparation of TS solution for poorly

soluble or volatile

4.2 Soil test

Initial concentrations of test

4.2.1

Iodine

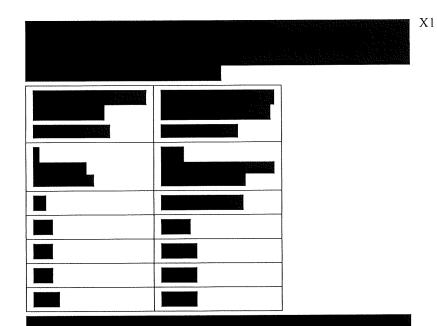
Section A7.5.1.2 Earthworm, acute toxicity test

Annex Point IIIA, XIII.3.2 test substances 3.3 Reference substance 3.3.1 Method of analysis for reference substance 3.4 Testing procedure 3.4.1 Preparation of the test substance 3.4.2 Application of the test substance 3.4.3 Test organisms 3.4.4 Test system 3.4.5 Test conditions 3.4.6 Test duration 3.4.7 Mortality, change in biomass, abnormal behaviour or toxic symptoms Test parameter 3.4.8 Examination Monitoring of test 3.4.9 substance concentration 3.4.10 Statistics **RESULTS** 4.1 Filter paper test 4.1.1 Concentration 4.1.2 Number/ percentage of animals showing adverse effects 4.1.3 Nature of adverse effects

Biocidal active substance:

Document IIIA, Section A7.4-7.6

RMS Sweden

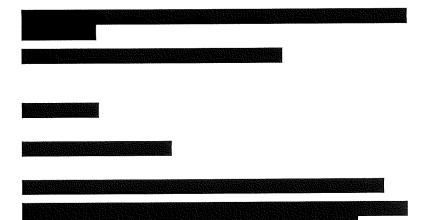

Iodine

Section A7.5.1.2 Earthworm, acute toxicity test

Annex Point IIIA, XIII.3.2

4.2.2 Actual concentrations of test substance

- 4.2.3 Effect data (Mortality)
- 4.2.4 Concentration / effect curve
- 4.2.5 Other effects



4.3 Results of controls

- 4.3.1 Mortality
- 4.3.2 Number/ percentage of earthworms showing adverse effects
- 4.3.3 Nature of adverse effects

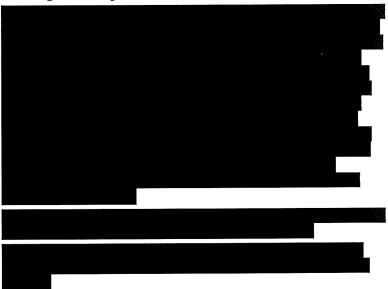
4.4 Test with reference substance

- 4.4.1 Concentrations
- 4.4.2 Results

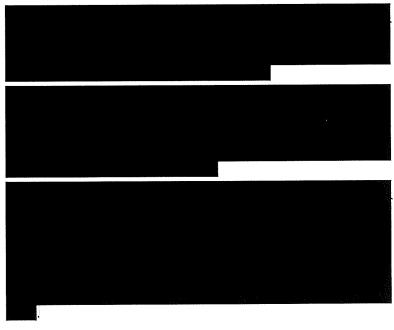
Document IIIA, Section A7.4-7.6

RMS Sweden

Iodine


Section A7.5.1.2

Earthworm, acute toxicity test


Annex Point IIIA, XIII.3.2

APPLICANT'S SUMMARY AND CONCLUSION

5.1 Materials and methods The acute toxicity of exogenous Iodine to earthworms, Eisenia fetida, was determined in a 14-day soil exposure laboratory study conducted according to OECD guideline 207.

5.2 Results and discussion

5.2.1 LC_0

125 mg Iodine/kg soil d.w.

5.2.2 LC_{50} >1000 mg Iodine/kg soil d.w.

5.2.3 LC_{100} >1000 mg Iodine/kg soil d.w.

5.3 Conclusion

Iodine, when applied to soil, does not acutely affect earthworms up to a concentration of at least 125 mg Iodine/kg soil d.w.

Biocidal active substance:

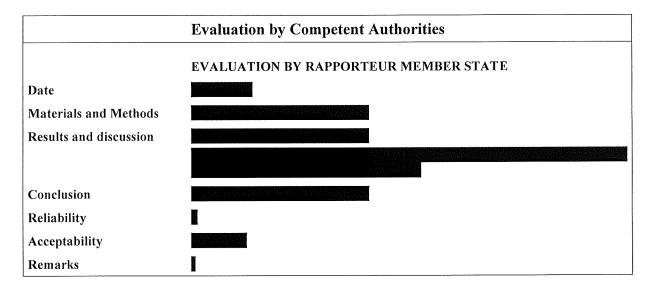
Document IIIA, Section A7.4-7.6

RMS Sweden

Iodine

Section A7.5.1.2 Earthworm, acute toxicity test

Biocidal active substance:


Document IIIA, Section A7.4-7.6

RMS Sweden

Iodine

Section A7.5.1.2

Earthworm, acute toxicity test

Iodine

Section A7.5.1.2 Earthworm, acute toxicity test

Table A7.5.1.2/01-1: Preparation of TS solution

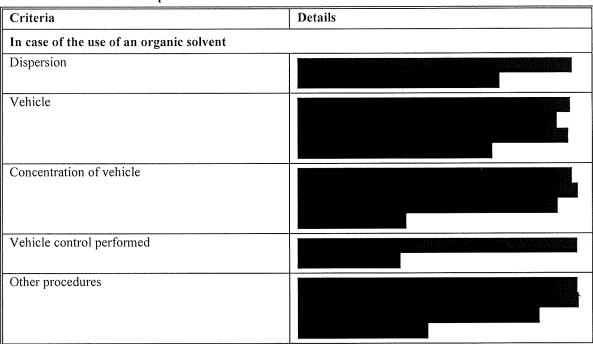


Table A7.5.1.2/01-2: Test organisms

Criteria	Details
Species/strain	earthworm Eisenia fetida (subspecies Eisenia fetida andrei
Source of the initial stock	
Culturing techniques	
Age/weight	
Pre-treatment	

Iodine

Section A7.5.1.2 Earthworm, acute toxicity test

Table A7.5.1.2/01-3: Test system

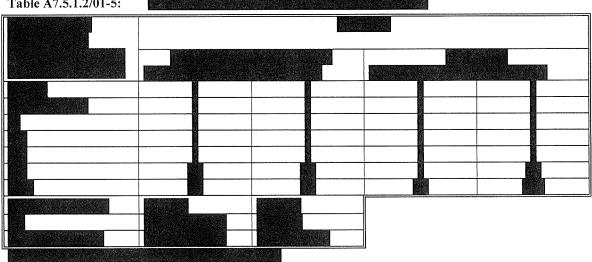
Criteria	Details
Artificial soil test substrate	
Test mixture	
Size, volume and material of test container	
Amount of artificial soil (kg)/ container	
Nominal levels of test concentrations	
Measured test concentrations at the start of the test	
Number of replicates/concentration	
Number of earthworms/test concentration	
Number of earthworms/container	
Light source	
Test performed in closed vessels due to significant	

Document IIIA, Section A7.4-7.6

RMS Sweden

Iodine

1-4:1:4644	1
Volatility of test substrate	!
	1


Section A7.5.1.2

Earthworm, acute toxicity test

Table A7.5.1.2/01-4: **Test conditions**

Criteria	Details
Test temperature	
Moisture content	
рН	
Adjustment of pH	
Light intensity / photoperiod	
Relevant degradation products	

Table A7.5.1.2/01-5:

Effect data (based on nominal concentrations) Table A7.5.1.2/01-6:

	14 d [mg/kg soil] ¹	95 % c.l.
NOEC	125	Not applicable
LC ₅₀	>1000	Not calculated
LC ₁₀₀	>1000	Not calculated

indicate if effect data are based on nominal (n) or measured (m) concentrations

Iodine Registration Group (IRG)

RMS Sweden

Iodine

Section A7.5.1.2

Earthworm, acute toxicity test

Annex Point IIIA, XIII.3.2

Table A7.5.1.2/01-7:

Biocidal active substance:

Document IIIA, Section A7.4-7.6

RMS Sweden

Iodine

Section 7.5.1.3 Acute toxicity to terrestrial plants

Annex Point IIIA, XIII.3.2

Official use only

1 REFERENCE

1.1 Reference

Friedrich, S. (2009): Effects of Iodine on seedling emergence and seedling growth of non-target terrestrial plants; BioChem Agrar, Gerichshain, Germany; Report No. 09 10 48 010 S; 10.11.2009; Doc. No. 851-001 (unpublished) and

Knoch, E. (2009): Iodine –Determination of Iodine in Soils; SGS Institut Fresenius, Taunusstein, Germany; IF-09/01448579, 06.11.2009; Doc. No. 434-002 (unpublished) submitted under Section point A7.5.1/01.

1.2 Data protection

1.2.1 Data owner

1.2.2 Companies with letter of access

1.2.3 Criteria for data protection

2 GUIDELINES AND QUALITY ASSURANCE

2.1 Guideline study

Yes, OECD 208 (2006)

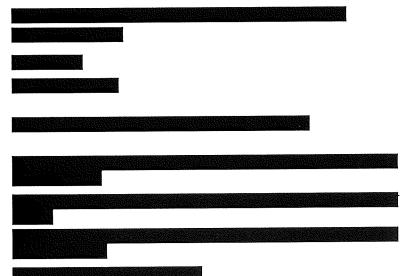
2.2 GLP

2.3 Deviations

No

3 METHOD

3.1 Test material


As given in section 2

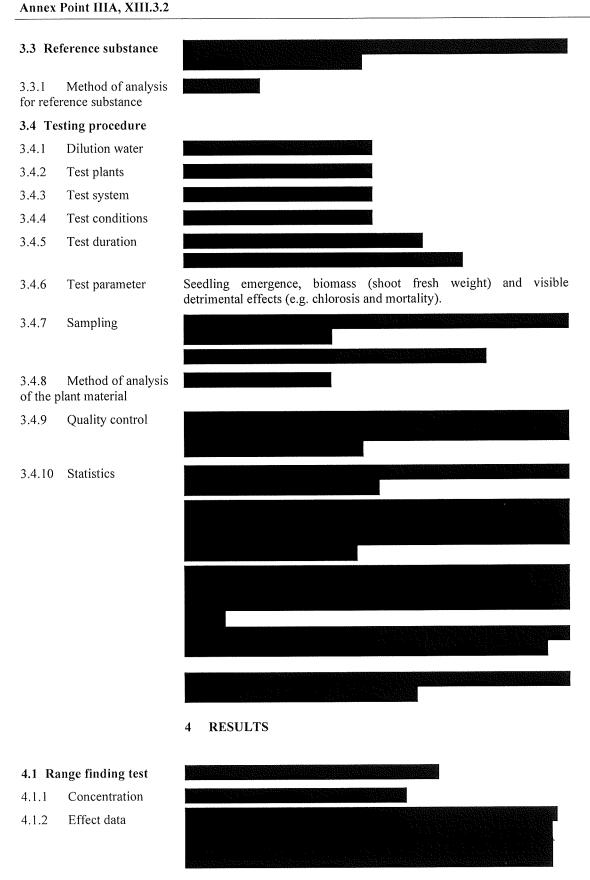
- 3.1.1 Lot/Batch number
- 3.1.2 Specification
- 3.1.3 Purity
- 3.1.4 Description of test substance

3.1.5 Composition of Product

3.1.6 Further relevant properties

3.1.7 Method of analysis

3.2 Preparation of TS solution for poorly soluble or volatile test substances


Biocidal active substance:

Document IIIA, Section A7.4-7.6

RMS Sweden

Iodine

Section 7.5.1.3 Acute toxicity to terrestrial plants

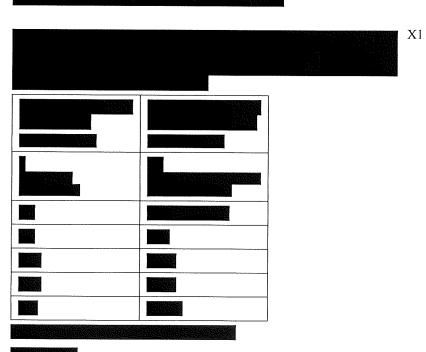
Page 80 of 120

Biocidal active substance:

Document IIIA, Section A7.4-7.6

RMS Sweden

Iodine


Section 7.5.1.3 Acute toxicity to terrestrial plants

Annex Point IIIA, XIII.3.2

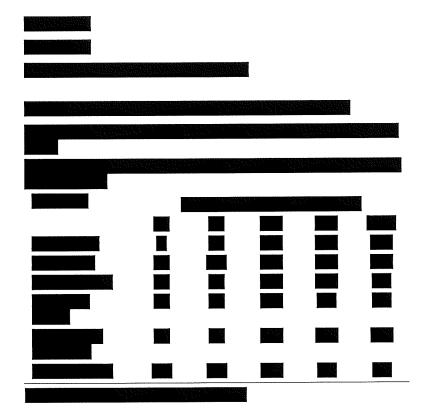
4.2 Results test substance

- 4.2.1 Applied initial concentration
- 4.2.2 Actual concentrations of test substance

- 4.2.3 Phytotoxicity rating
- 4.2.4 Plant height
- 4.2.5 Plant dry weights

Biocidal active substance:

Document IIIA, Section A7.4-7.6


RMS Sweden

Iodine

Section 7.5.1.3 Acute toxicity to terrestrial plants

Annex Point IIIA, XIII.3.2

- 4.2.6 Root dry weights
- Root length 4.2.7
- 4.2.8 Number of dead plants
- Effect data 4.2.9
- 4.2.10 Concentration / response curve

4.2.11 Other effects

4.3 Results of controls

- 4.3.1 Number/ percentage of plants showing adverse effects
- 4.3.2 Nature of adverse effects
- 4.4 Test with reference substance
- 4.4.1 Concentrations
- 4.4.2 Results

APPLICANT'S SUMMARY AND CONCLUSION

5.1 Materials and methods The test was conducted according to OECD guideline 208 (2006). The test item was dissolved into acetone which was subsequently mixed with quartz sand. After evaporation of the solvent, the coated quartz sand was incorporated into the soil by mixing with the soil in a mixing machine. The EC₅₀, LOEC and NOEC-values were determined on the basis of the effects on shoot fresh weight determined 21 days after 50 % emergence. Seedling emergence and survival after emergence were recorded.

5.2 Results and discussion

Biocidal active substance:

Document IIIA, Section A7.4-7.6

RMS Sweden

Iodine

Section 7.5.1.3 Acute toxicity to terrestrial plants Annex Point IIIA, XIII.3.2

Page 83 of 120

Biocidal active substance:

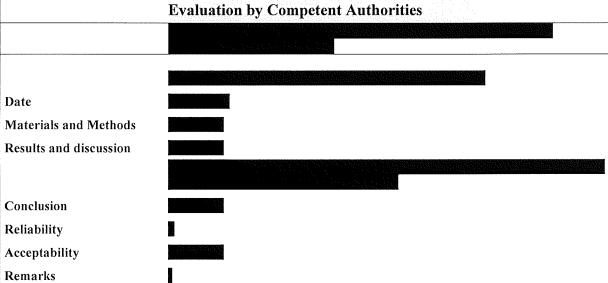
Document IIIA, Section A7.4-7.6

RMS Sweden

Iodine

Section 7.5.1.3 Acute toxicity to terrestrial plants

5.3 Res	sults shoot fresh weight		
5.3.1	EC ₂₅	Avena sativa: Allium cepa: Brassica napus: Helianthus annuus: Lycopersicon esculentum: Cucumis sativa:	10.952 18.080 8.738 6.949 11.997 12.336
5.3.2	EC ₅₀	Avena sativa: Allium cepa: Brassica napus: Helianthus annuus: Lycopersicon esculentum: Cucumis sativa:	13.408 26.648 22.146 16.488 16.231 14.228
5.3.3	EC ₇₅	Avena sativa: Allium cepa: Brassica napus: Helianthus annuus: Lycopersicon esculentum. Cucumis sativa:	16.414 39.276 56.129 39.121 :21.960 16.411
5.3.4	NOEC/LOEC	Avena sativa: Allium cepa: Brassica napus: Helianthus annuus: Lycopersicon esculentum. Cucumis sativa:	7.4 / 22.2 7.4 / 22.2 7.4 / 22.2 7.4 / 22.2 : 7.4 / 22.2 7.4 / 22.2
5.4 Co	nclusion	emergence nor shoot f	Jodine, when ogenous substance, did not affect seedling fresh weight nor any of the phytotoxicity tions of at least 7.4 mg Iodine/kg soil dry
5.4.1	Other Conclusions	CALL WAY	
5.4.2	Reliability		
5.4.3	Deficiencies		


Biocidal active substance:

Document IIIA, Section A7.4-7.6

RMS Sweden

Iodine

Section 7.5.1.3 Acute toxicity to terrestrial plants Annex Point IIIA, XIII.3.2

	Iodine	Registration	Group	(IRG)
--	---------------	--------------	-------	-------

Document IIIA, Section A7.4-7.6

RMS Sweden

Iodine

Section 7.5.1.3

Acute toxicity to plants

Table A7.5.1.3/01-1: Preparation of TS solution for poorly soluble or volatile test substances

Criteria	Details
Dispersion	
Vehicle	
Concentration of vehicle	
Vehicle control performed	
Other procedures	

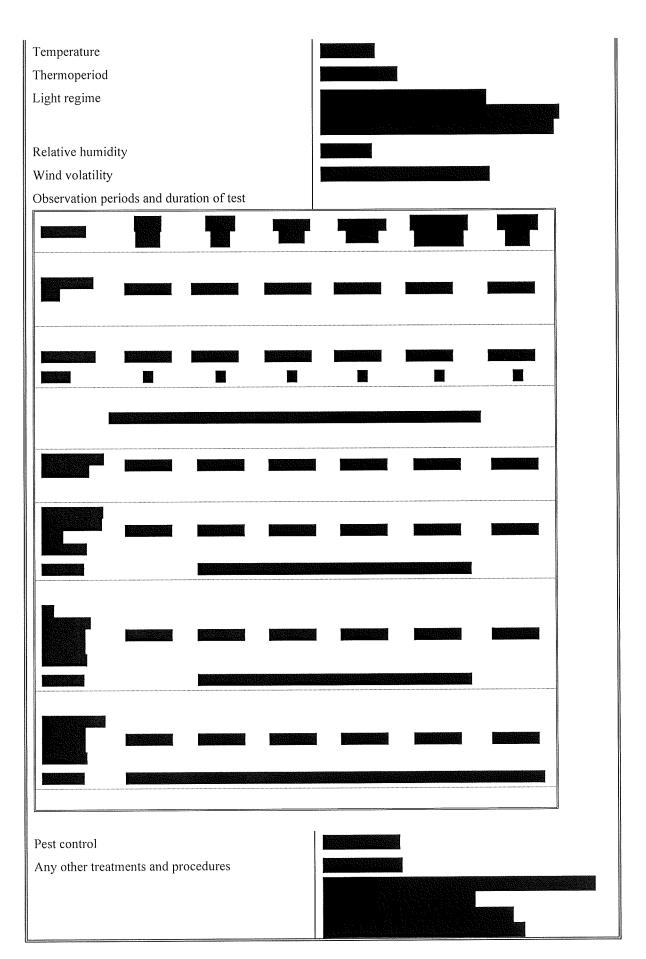
Table A7.5.1.3/01-2: Test plants

Family	Species	Common name	Source (seed/plant)

Iodine

Section 7.5.1.3 Acute toxicity to plants

Table A7.5.1.3/01-3: Test system

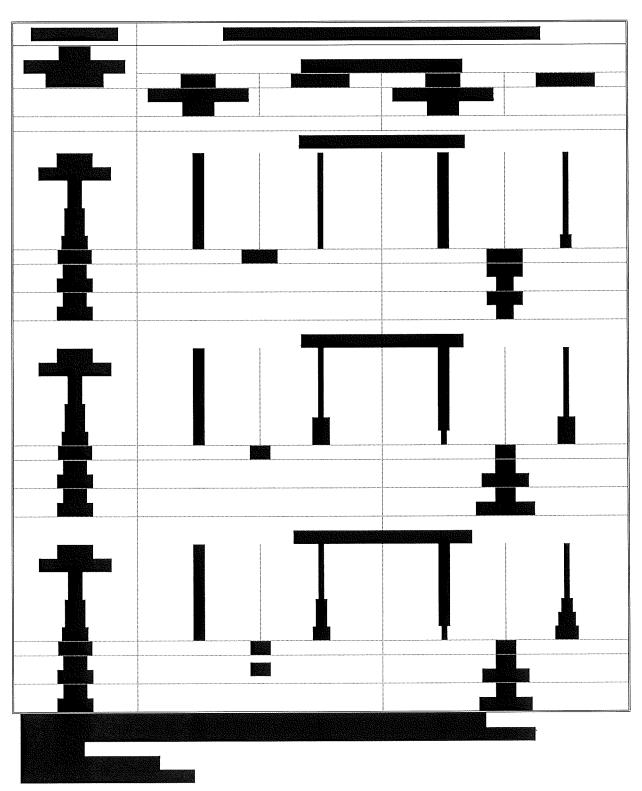

Criteria	Details
Test type	
Container type	
Seed germination potential	
Identification of the plant species	
Number of replicates	
Numbers of plants per replicate per dose	
Date of planting	
Plant density	
Date of test substance application	
High of plants at application	
Date of phytotoxicity rating or harvest	
Dates of analysis	

Iodine

Section 7.5.1.3 Acute toxicity to plants

Table A7.5.1.3/01-4: **Test conditions** Criteria Test type Method of application Application levels Dose rates Substrate characteristics Watering of the plants

Iodine


Iodine Registration Group (IRG)	Biocidal active substance:	Document IIIA Section A7.4-7.6
RMS Sweden	Iodine	

Iodine

Section 7.5.1.3

Acute toxicity to plants

Table A7.5.1.3/01-5: Effects on seedling

Iodine

Section 7.5.1.3

Acute toxicity to plants

Annex Point IIIA, XIII.3.2

Effects on seedling Table A7.5.1.3/01-5:

Section 7.5.1.3

Acute toxicity to plants

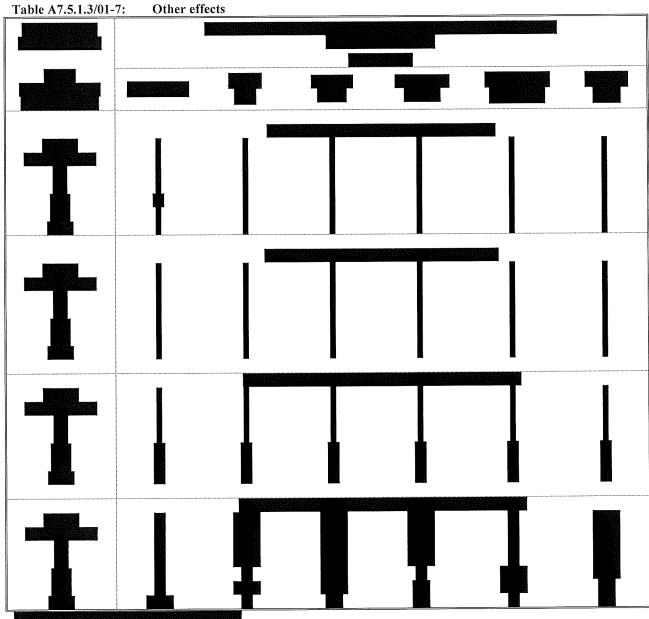
Document IIIA, Section A7.4-7.6

RMS Sweden

Iodine

Table A7.5.1.3/01-6:	Effec	ts on sho	ot									
						\$45\-\A\}\$			a			
	- 1	•					<u>'</u>					
	1		ı	74		iez. 🚜			1		ı	
										I		-
		T										
					la constante		- Transfer					
								, i				
	1			Ŧ								
					1				-		-	
					(MAX)	64 - Z						
						Ŧ						
							,		' 		· Markana	
												<u> </u>
							estinij		,		3	Managing S
_												
									4			
										T		
					gea e2 ja		SECTION	VINE NEW YORK				

Biocidal active substance:


Document IIIA, Section A7.4-7.6

RMS Sweden

Iodine

Section 7.5.1.3/01 Annex Point IIIA, Acute toxicity to plants

XIII.3.2

Validity criteria for terrestrial plant toxicity according to OECD 208 (2006) Table A7.5.1.3/01-8:

NEW NEW YORK	

Document IIIA, Section A7.4-7.6

RMS Sweden

Iodine

Section A7.5.2 Terrestrial tests, long-term tests

	JUSTIFICATION FOR NON-SUBMISSION OF DATA	Official use only
Other existing data []	Technically not feasible [] Scientifically unjustified []	
Limited exposure []	Other justification [X]	
Detailed justification:		
	EVALUATION BY RAPPORTEUR MEMBER STATE	
Date		
Evaluation of applicant's justification	I	
Conclusion		
Remarks	I	