# SUBSTANCE EVALUATION CONCLUSION

# as required by REACH Article 48 and **EVALUATION REPORT**

for

p-Xylene EC No 203-396-5 CAS No 106-42-3 and o-Xylene EC No 202-422-2 CAS No 95-47-6 and m-Xylene EC No 203-576-3 CAS No 108-38-3

**Evaluating Member State(s):** Germany

Dated: 25 August 2021

# **Evaluating Member State Competent Authority**

#### BAuA

Federal Institute for Occupational Safety and Health Division 5 - Federal Office for Chemicals Friedrich-Henkel-Weg 1-25 D-44149 Dortmund, Germany

# Year of evaluation in CoRAP: 2015

Before concluding the Substance Evaluation, Decisions to request further information were issued on 17 March 2016.

### Further information on registered substances here:

http://echa.europa.eu/web/guest/information-on-chemicals/registered-substances

#### DISCLAIMER

This document has been prepared by the evaluating Member State as a part of the substance evaluation process under the REACH Regulation (EC) No 1907/2006. The information and views set out in this document are those of the author and do not necessarily reflect the position or opinion of the European Chemicals Agency or other Member States. The Agency does not guarantee the accuracy of the information included in the document. Neither the Agency nor the evaluating Member State nor any person acting on either of their behalves may be held liable for the use which may be made of the information contained therein. Statements made or information contained in the document are without prejudice to any further regulatory work that the Agency or Member States may initiate at a later stage.

# Foreword

Substance evaluation is an evaluation process under REACH Regulation (EC) No. 1907/2006. Under this process the Member States perform the evaluation and ECHA secretariat coordinates the work. The Community rolling action plan (CoRAP) of substances subject to evaluation, is updated and published annually on the ECHA web site<sup>1</sup>.

Substance evaluation is a concern driven process, which aims to clarify whether a substance constitutes a risk to human health or the environment. Member States evaluate assigned substances in the CoRAP with the objective to clarify the potential concern and, if necessary, to request further information from the registrant(s) concerning the substance. If the evaluating Member State concludes that no further information needs to be requested, the substance evaluation is completed. If additional information is required, this is sought by the evaluating Member State. The evaluating Member State then draws conclusions on how to use the existing and obtained information for the safe use of the substance.

This Conclusion document, as required by Article 48 of the REACH Regulation, provides the final outcome of the Substance Evaluation carried out by the evaluating Member State. The document consists of two parts i.e. A) the conclusion and B) the evaluation report. In the conclusion part A, the evaluating Member State considers how the information on the substance can be used for the purposes of regulatory risk management such as identification of substances of very high concern (SVHC), restriction and/or classification and labelling. In the evaluation report part B the document provides explanation how the evaluating Member State assessed and drew the conclusions from the information available.

With this Conclusion document the substance evaluation process is finished and the Commission, the Registrant(s) of the substance and the Competent Authorities of the other Member States are informed of the considerations of the evaluating Member State. In case the evaluating Member State proposes further regulatory risk management measures, this document shall not be considered initiating those other measures or processes. Further analyses may need to be performed which may change the proposed regulatory measures in this document. Since this document only reflects the views of the evaluating Member State, it does not preclude other Member States or the European Commission from initiating regulatory risk management measures which they deem appropriate.

<sup>&</sup>lt;sup>1</sup> <u>http://echa.europa.eu/regulations/reach/evaluation/substance-evaluation/community-rolling-action-plan</u>

# Contents

| 1. CONCERN(S) SUBJECT TO EVALUATION7                                                                                           |
|--------------------------------------------------------------------------------------------------------------------------------|
| 2. OVERVIEW OF OTHER PROCESSES / EU LEGISLATION                                                                                |
| 3. CONCLUSION OF SUBSTANCE EVALUATION 8                                                                                        |
| 4. FOLLOW-UP AT EU LEVEL                                                                                                       |
| 4.1. Need for follow-up regulatory action at EU level8                                                                         |
| 5. CURRENTLY NO FOLLOW-UP FORESEEN AT EU LEVEL                                                                                 |
| 6. TENTATIVE PLAN FOR FOLLOW-UP ACTIONS (IF NECESSARY)                                                                         |
| Part B. Substance evaluation 10                                                                                                |
| 7. EVALUATION REPORT 10                                                                                                        |
| 7.1. Overview of the substance evaluation performed10                                                                          |
| 7.2. Procedure                                                                                                                 |
| 7.3. Identity of the substance                                                                                                 |
| 7.4. Physico-chemical properties14                                                                                             |
| 7.5. Manufacture and uses                                                                                                      |
| 7.5.1. Quantities                                                                                                              |
| 7.5.2. Overview of uses                                                                                                        |
| 7.6. Classification and Labelling19                                                                                            |
| 7.6.1. Harmonised Classification (Annex VI of CLP)19                                                                           |
| 7.6.2. Self-classification                                                                                                     |
| 7.7. Environmental fate properties                                                                                             |
| 7.8. Environmental hazard assessment                                                                                           |
| 7.9. Human health hazard assessment                                                                                            |
| 7.9.1. Toxicokinetics                                                                                                          |
| 7.9.2. Acute toxicity                                                                                                          |
| 7.9.3. Sensitisation                                                                                                           |
| 7.9.4. Repeated dose toxicity                                                                                                  |
| 7.9.5. Genotoxicity                                                                                                            |
| 7.9.6. Carcinogenicity                                                                                                         |
| 7.9.7. Toxicity to reproduction (effects on fertility and developmental toxicity)                                              |
| 7.9.8. Aspiration hazard                                                                                                       |
| 7.9.9. Hazard assessment of physico-chemical properties                                                                        |
| 7.9.10. Evaluation of the Read-Across-/Category Approach                                                                       |
| 7.9.11. Selection of the critical DNEL(s)/DMEL(s) and/or qualitative/semi-quantitative descriptors for critical health effects |
| 7.9.12. Conclusions of the human health hazard assessment and related classification and labelling                             |
| 7.10. Assessment of endocrine disrupting (ED) properties                                                                       |
| 7.10.1. Endocrine disruption – Environment                                                                                     |
| 7.10.2. Endocrine disruption - Human health                                                                                    |
| 7.10.3. Conclusion on endocrine disrupting properties (combined/separate)                                                      |
| 7.11. PBT and VPVB assessment                                                                                                  |
| 7.12. Exposure assessment                                                                                                      |

Substance Evaluation Conclusion document EC No 203-396-5, 202-422-2, 203-576-3

| 7.12.1. Human health                 | 83  |
|--------------------------------------|-----|
| 7.12.2. Environment                  |     |
| 7.12.3. Combined exposure assessment |     |
| 7.13. Risk characterisation          |     |
| 7.14. References                     | 94  |
| 7.15. Abbreviations                  | 105 |
| 7.16. Annex 1 – RAAF assessment      |     |
|                                      |     |

# Part A. Conclusion **1. CONCERN(S) SUBJECT TO EVALUATION**

The three xylene isomers o-xylene, m-xylene and p-xylene were originally selected for substance evaluation in order to clarify the following concerns:

- Suspected reprotoxicant
- Suspected sensitiser
- Consumer use
- Cumulative exposure
- High (aggregated) tonnage
- High RCR
- Wide dispersive use

During the evaluation, the following additional concerns were identified:

- respiratory irritation
- aspiration hazard
- Risk Characterisation Ratios > 1 were obtained when comparing several consumer uses with the corresponding acute or chronic DNELs, based on neurobehavioural effects, and
- Risk Characterisation Ratios > 1 were obtained when comparing several worker uses with the corresponding chronic DNELs, based on neurobehavioural effects.

# 2. OVERVIEW OF OTHER PROCESSES / EU LEGISLATION

For all three xylene isomers, dossier evaluation was conducted by ECHA and the following decisions were adopted:

#### o-xylene:

- 1) Decision of 18 April 2013 requesting a pre-natal developmental toxicity (PNDT) study in rats via inhalation.<sup>2</sup>
- 2) Decision of 16 December 2014 requesting information on composition, spectral data as well as ready biodegradability, long-term toxicity testing on fish and effects on terrestrial organisms.<sup>3</sup>
- 3) Decision of 21 February 2019 requesting a 90-d study in rats and a PNDT study in a second species, both via the oral route.<sup>4</sup>

### m-xylene:

- 1) Decision of 18 April 2013 requesting a PNDT study in rats via inhalation.<sup>5</sup>
- 2) Decision of 16 December 2014 requesting information on composition, spectral data as well as ready biodegradability, long-term toxicity testing on fish and effects on terrestrial organisms.<sup>6</sup>
- 3) Decision of 21 February 2019 requesting a 90-d study in rats and a PNDT study in a second species, both via the oral route.<sup>7</sup>

#### p-xylene:

1) Decision of 18 April 2013 requesting a PNDT study in rats via inhalation.<sup>8</sup>

<sup>&</sup>lt;sup>2</sup> https://echa.europa.eu/documents/10162/eb1e3e4f-649d-b298-7c63-03848edb784f

<sup>&</sup>lt;sup>3</sup> https://echa.europa.eu/documents/10162/b83fe5bf-2c3e-be9f-8158-9ec204faa44b

<sup>&</sup>lt;sup>4</sup> <u>https://echa.europa.eu/documents/10162/71facfdf-5051-f6b0-5526-29a0c6c789c3</u>

<sup>&</sup>lt;sup>5</sup> https://echa.europa.eu/documents/10162/0efa2c88-7122-2653-7ee4-1013b34af0c5

 <sup>&</sup>lt;sup>6</sup> https://echa.europa.eu/documents/10162/5df5873e-69c5-f7ce-852b-bcd3ff89cc5a
 <sup>7</sup> https://echa.europa.eu/documents/10162/57ca8e55-5368-a804-f3e5-f2fa2231ecb7

<sup>&</sup>lt;sup>8</sup> https://echa.europa.eu/documents/10162/0efa2c88-7122-2653-7ee4-1013b34af0c5

- 2) Decision of 16 December 2014 requesting information on composition, spectral data as well as ready biodegradability, long-term toxicity testing on fish and effects on terrestrial organisms.<sup>9</sup>
- 3) Decision of 21 February 2019 requesting a 90-d study in rats and a PNDT study in a second species, both via the oral route.<sup>10</sup>

# **3. CONCLUSION OF SUBSTANCE EVALUATION**

### Table 1

| CONCLUSION OF SUBSTANCE EVALUATION                  |   |
|-----------------------------------------------------|---|
| Conclusions                                         |   |
| Need for follow-up regulatory action at EU level    | Х |
| Harmonised Classification and Labelling             |   |
| Identification as SVHC (authorisation)              |   |
| Restrictions                                        |   |
| Other EU-wide measures                              | х |
| No need for regulatory follow-up action at EU level |   |

# 4. FOLLOW-UP AT EU LEVEL

# **4.1. Need for follow-up regulatory action at EU level**

The result of the substance evaluation was a significantly lower DNEL compared to the currently valid limit values. Risks for a series of uses of xylenes in occupational settings cannot be excluded (obtained RCRs > 1). Therefore, an adaptation of the EU-wide occupational exposure limit (OEL) for xylenes may be necessary.

Consumer uses for the xylene isomers subject to substance evaluation have been removed by most registrants. The consideration whether follow-up action is required will be based on the uses of the xylenes isomeric mixtures (EC number 905-562-9, EC number 905-588-0, CAS RN 1330-20-7,) which are included in the CoRAP and are supposedly of higher relevance for consumer exposure.

# **5. CURRENTLY NO FOLLOW-UP FORESEEN AT EU LEVEL**

Not applicable.

<sup>9</sup> https://echa.europa.eu/documents/10162/4651f1cd-88d2-90a2-1d28-d6f35defc0e2

#### 6. TENTATIVE PLAN FOR FOLLOW-UP ACTIONS (IF **NECESSARY**)

| FOLLOW-UP                                                      |                    |           |
|----------------------------------------------------------------|--------------------|-----------|
| Follow-up action                                               | Date for intention | Actor     |
| Amendment of European Indicative OEL Value (IOELV) for xylenes | N/A                | SCOEL/RAC |

# Part B. Substance evaluation

# **7. EVALUATION REPORT**

# **7.1.** Overview of the substance evaluation performed

The three xylene isomers o-xylene, m-xylene and p-xylene were originally selected for substance evaluation in order to clarify the following concerns:

- Suspected reprotoxic
- Suspected Sensitiser
- Consumer use
- Cumulative exposure
- High (aggregated) tonnage
- High RCR
- Wide dispersive use

During the evaluation, the following additional concerns were identified:

- respiratory irritation
- aspiration hazard
- Risk Characterisation Ratios > 1 were obtained when comparing several consumer uses with the corresponding acute or chronic DNELs, based on neurobehavioural effects, and
- Risk Characterisation Ratios > 1 were obtained when comparing several worker uses with the corresponding chronic DNELs, based on neurobehavioural effects.

| EVALUATED ENDPOINTS       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Endpoint                  | Outcome/conclusion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| All toxicity endpoints    | The registrants' read-Across approach was insufficiently justified, but eMSCA considers the rationale to be plausible in principle. This has been formally addressed by ECHA via a dossier evaluation. (CCH).                                                                                                                                                                                                                                                                                                                                                                           |
| Acute toxicity            | No concern. However data in humans and animals suggest that classification as STOT SE 3 (H336: May cause drowsiness or dizziness) should be considered by registrants/notifiers.                                                                                                                                                                                                                                                                                                                                                                                                        |
| Irritation/corrosion      | Concern confirmed. Classification for respiratory irritation should be considered by registrants/notifiers.                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Sensitisation             | Concern clarified. Xylene isomers are not considered skin sensitisers according to CLP.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Repeated Dose<br>Toxicity | Concern on ototoxicity clarified: confirmed for p-xylene, but the required doses are above CLP STOT RE 2 classification thresholds.<br>If the other two xylene isomers would also have the potential to cause this effect, even higher doses (> 1800 ppm) would be required.                                                                                                                                                                                                                                                                                                            |
| Genotoxicity              | No concern.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Carcinogenicity           | No concern.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Reproductive toxicity     | Concern unresolved. Since no immediate concern for developmental toxicity was evident from the available database, closing this data gap was transferred to Dossier Evaluation. Data on developmental toxicity in a second species (rabbits) as well as additional read-across justification were provided by the registrants after conclusion of this substance evaluation by the eMSCA. Although this information has not been assessed in depth by the eMSCA and is not reflected in this report, the PDNT study the registrant provided did not demonstrate developmental toxicity. |

| EVALUATED ENDPOINTS      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Endpoint                 | Outcome/conclusion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Aspiration hazard        | Concern confirmed. Classification for aspiration hazard should be considered by registrants/notifiers.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Consumer exposure        | It can be assumed that xylenes are present in consumer products and consumer exposure is likely. On the other hand, consumer uses for the xylene isomers subject to substance evaluation have been removed by most registrants. However, these uses may still be relevant for isomeric mixtures of xylenes which are registered separately.<br>A new, lower DNEL has been derived by the eMSCA which can be adjusted for shorter exposure duration over a day and/or infrequent use over a year (instead of averaging out the event exposure over a year). As a result, the eMSCA concludes that for a series of previously registered uses, risks to consumers may not be excluded (anticipated RCRs >1).<br>The eMSCA considers that this DNEL should be applied for future exposure assessments by the registrants of the pure xylene isomers subject to substance evaluation as well as isomeric mixtures of xylenes which so far have not been subject to formal substance evaluation. |
| Occupational<br>exposure | Concern confirmed. Applying the new DNEL derived by the eMSCA, risks for a series of uses of xylenes in occupational settings cannot be excluded (Obtained RCRs $> 1$ ).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                          | The eMSCA considers that an adaptation of the EU-wide occupational exposure limit (OEL) for xylenes may be necessary.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

# 7.2. Procedure

Pursuant to Article 44(2) of the REACH Regulation, o-, m-, and p-xylene were included on the Community rolling action plan (CoRAP) for evaluation in 2015. The Competent Authority of Germany was appointed to carry out the evaluation. The substance evaluation started on 17 March 2015.

Based on the fact that the registrants have used a read-across/category approach for the evaluation of the xylenes, in the following chapters the toxicity of the three xylene isomers (o-xylene, EC number 202-422-2/ CAS RN 95-47-6; m-xylene, EC number 203-576-3/ CAS RN 108-38-3; p-xylene, EC number 203-396-5/ CAS RN 106-42-3) is evaluated together.

In addition to the three xylene isomers, the data matrix used for the read-across/category approach contains data on "xylene" (EC number 215-535-7/ CAS number 1330-20-7) from which in the industrial process the individual isomers are obtained by further purification steps. Different qualities of xylene are on the market and test data have been obtained with xylene of varying composition: aside from the o-, m-, and p-isomers, xylene also contains a significant amount of ethylbenzene (EC number 202-849-4/ CAS RN 100-41-4). For the former, the DE CA has declared its intention to potentially perform an SEv at a later stage, for the latter, data have been assessed by the DE CA in the context of an EU RAR (German MSCA, 2008); unless directly used by the registrants for registration of the individual xylene isomers, these data are not reported again in this Substance Evaluation report.

In the following, unless specific xylene isomers are addressed, the name "xylene" will be used to designate multi-constituent substances which contain the three individual isomers and ethylbenzene. Where known, purity and composition of the test materials (and, in case of "xylene", their constituents) are provided in the tabular summaries of the toxicological studies. Substance Evaluation Conclusion document EC No 203-396-5, 202-422-2, 203-576-3

Human health hazard assessment: A thorough literature search for all xylene isomers and mixed xylenes was undertaken by the eMSCA in 2015 using web-based databases (TOXLINE, ISI Web Of Science, Scopus). Since the registration dossiers are based on a category approach, a need was identified to evaluate the available data base for communalities/differences between the individual category members. Therefore, all relevant human health endpoints as addressed by the requirements specified in Annexes VII-X to the REACH regulation have been addressed in this substance evaluation. A detailed documentation of the application of ECHA's Read-Across Assessment Framework (RAAF) can be found in Annex 1, section 7.16.. Before starting the finalisation of this document in February 2019, an additional search in the PubMed and Scopus databases was performed to identify any relevant new studies submitted between 2012 and 2019.

Exposure assessment for consumers: In order to clarify health risks derived from the use of consumer products that contain xylene isomers, the CSRs and the technical IUCLID dossiers were checked as to whether the exposure scenarios are comprehensive, inherently conclusive, and complete regarding the identified uses, operational conditions, and targeted population groups. In parallel to the SEv process, the registrants carried out a downstream user survey regarding consumer uses, asking for product categories which should be further supported and the concentration of xylenes present in the final products. A thoroughly revised consumer exposure assessment and risk characterisation was provided to the eMSCA in October 2015, and also evaluated and reported here. However, only very few registrants have updated their registration dossiers regarding these results until March 2016. Therefore, all identified uses are still supported by the registrants and the required information refers to these.

For all three xylene isomers, substance evaluation decisions were taken by ECHA and sent to the respective registrant(s) on 30 March 2017, asking them to submit an update of the registration dossiers containing the required information.<sup>11</sup> In conclusion, most of the registrant(s) updated their Registration Dossiers and removed the identified consumer uses in the technical IUCLID as well as in the CSR.

It can be assumed that xylenes are present in consumer products and consumer exposure is likely. Consumer products may be produced using only one of the xylene isomers, but use of mixed xylenes often would appear more likely for economic reasons. However, these mixed xylenes are registered as separate substances under REACH which were not the subject of this evaluation.

Exposure assessment for workers: The occupational exposure assessment of the eMSCA is essentially based on model estimates provided in the lead CSR. The lead registrant assessed inhalation and dermal exposure of workers by using the tier 1 model ECETOC TRA v3. It has to be noted that the registrants did not provide any measurement data on workplace exposure. However, measured workplace exposure data from Germany have been evaluated in a study by the Institute for Occupational Safety and Health of the German Social Accident Insurance (IFA, 2016) and used as a basis for the worker exposure assessment. A detailed documentation of the exposure scenarios can be found in section 7.12.1.1.

The eMSCA formally concluded the follow-up assessment of the new information in April 2019. The draft conclusion and substance evaluation report was provided to ECHA on 14 April 2020. Prior to publication of the final report by ECHA in 2021, further information has been made available in the registrations following compliance check procedures for the three substances (cf. p. 8, Part A: 2. Overview of other processes/EU legislation).

<sup>&</sup>lt;sup>11</sup> SEV decision on o-xylene, 30 March 2017: <u>https://echa.europa.eu/documents/10162/af586a59-</u> eb77-fb3c-4f8f-35781cf507cd; SEV decision on m-xylene, 30 March 2017:

https://echa.europa.eu/documents/10162/6124be44-e7d4-7db0-eab7-7262ad81d5d8; SEV decision on p-xylene, 30 March 2017: https://echa.europa.eu/documents/10162/cb44ae93-1dcc-4191-2e26-b76d94444e94

The decisions by ECHA requested the following studies for all three substances:

- 1. Sub-chronic toxicity study (9o-day), oral route (Annex IX, Section 8.6.2. ;test method: OECD TG 408) in rats with the registered substance
- 2. Pre-natal developmental toxicity study (Annex X, Section 8.7.2.; test method: OECD TG 414) in a second species (rabbit), oral route with the registered substance.


This information has not been assessed by the eMSCA and is not reflected in detail in this report. However, ECHA has, in April 2021, formally concluded the compliance check and confirmed that the PNDT study submitted by the registrants is complying with the requested information.

# 7.3. Identity of the substance

Table 4

| P-XYLENE: SUBSTANCE IDENTITY                    |                                                                  |
|-------------------------------------------------|------------------------------------------------------------------|
| Public name:                                    | p-Xylene                                                         |
| EC number:                                      | 203-396-5                                                        |
| CAS number:                                     | 106-42-3                                                         |
| Index number in Annex VI of the CLP Regulation: | 601-022-00-9                                                     |
| Molecular formula:                              | C <sub>8</sub> H <sub>10</sub>                                   |
| Molecular weight range:                         | 106.16 g/mol                                                     |
| Synonyms:                                       | Benzene, 1,4-dimethyl-<br>1,4-Dimethylbenzene<br>4-Methyltoluene |

Type of substance: Mono-constituent **Structural formula:** 



#### Table 5

| O-XYLENE: SUBSTANCE IDENTITY                    |                                                                  |
|-------------------------------------------------|------------------------------------------------------------------|
| Public name:                                    | o-Xylene                                                         |
| EC number:                                      | 202-422-2                                                        |
| CAS number:                                     | 95-47-6                                                          |
| Index number in Annex VI of the CLP Regulation: | 601-022-00-9                                                     |
| Molecular formula:                              | C <sub>8</sub> H <sub>10</sub>                                   |
| Molecular weight range:                         | 106.16 g/mol                                                     |
| Synonyms:                                       | Benzene, 1,2-dimethyl-<br>1,2-Dimethylbenzene<br>o-Methyltoluene |

Type of substance: Mono-constituent **Structural formula:** 

## Table 6

| M-XYLENE: SUBSTANCE IDENTITY                    |                                                                  |
|-------------------------------------------------|------------------------------------------------------------------|
| Public name:                                    | m-Xylene                                                         |
| EC number:                                      | 203-576-3                                                        |
| CAS number:                                     | 108-38-3                                                         |
| Index number in Annex VI of the CLP Regulation: | 601-022-00-9                                                     |
| Molecular formula:                              | C <sub>8</sub> H <sub>10</sub>                                   |
| Molecular weight range:                         | 106.16 g/mol                                                     |
| Synonyms:                                       | Benzene, 1,3-dimethyl-<br>1,3-Dimethylbenzene<br>m-Methyltoluene |

Type of substance: Mono-constituent





# 7.4. Physico-chemical properties

## Table 7

# OVERVIEW OF PHYSICOCHEMICAL PROPERTIES OF P-XYLENE

| Property                                                     | Value                                                                                                                                                                                                       |
|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Physical state at 20 °C and 101.3 kPa                        | Colourless liquid                                                                                                                                                                                           |
| Melting/freezing point                                       | 13.2 °C, Handbook data from CRC handbook of chemistry and physics.<br>89th ed.                                                                                                                              |
| Boiling point                                                | 138.4 °C, Handbook data from CRC handbook of chemistry and physics. 89th ed.                                                                                                                                |
| Vapour pressure                                              | 1167 Pa at 25 °C, Handbook data from Handbook of vapour pressures and heats of vapourisation of hydrocarbons and related compounds 1971                                                                     |
| Water solubility                                             | 156 mg/L at 25 °C, Handbook data from Handbook of aqueous solubility data 2003                                                                                                                              |
| Partition coefficient n-octanol/water (Log K <sup>ow</sup> ) | log K <sub>ow</sub> = 3.15, Hansch C, Leo A, Hoekman D., American Chemical Society, 1995                                                                                                                    |
| Flashpoint                                                   | 27 °C c.c., Handbook data from The Merck Index, An Encyclopedia of Chemicals, Drugs and Biologicals, 14th edition                                                                                           |
| Autoflammability<br>Auto-ignition temperature                | 528 °C, Handbook data from CRC handbook of chemistry and physics.<br>89th ed.                                                                                                                               |
| <b>Flammability</b><br>Flammability upon ignition (solids)   | Testing not necessary, substance is a liquid.                                                                                                                                                               |
| Flammability in contact with water and pyrophoric properties | The molecular structure of p-xylene does not contain any groups that<br>indicate potential reactivity with water or pyrophoric properties and<br>handling of the substance indicates that this is the case. |
| Lower and Upper Explosion limits                             | 1.1–7%, Handbook data from CRC handbook of chemistry and physics.<br>89th ed.                                                                                                                               |
| Explosive properties                                         | Non-explosive                                                                                                                                                                                               |
| Oxidising properties                                         | Non-explosive                                                                                                                                                                                               |

## Table 8

| OVERVIEW OF PHYSICOCHEMICAL PROPERTIES OF O-XYLENE           |                                                                                                                                                                                                             |
|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Property                                                     | Value                                                                                                                                                                                                       |
| Physical state at 20 °C and 101.3 kPa                        | Colourless liquid                                                                                                                                                                                           |
| Melting/freezing point                                       | -25.2 °C, Handbook data from CRC handbook of chemistry and physics. 89th ed.                                                                                                                                |
| Boiling point                                                | 144.5 °C, Handbook data from CRC handbook of chemistry and physics. 89th ed.                                                                                                                                |
| Vapour pressure                                              | 882 Pa at 25 °C, Handbook data from Handbook of vapour pressures<br>and heats of vapourisation of hydrocarbons and related compounds<br>1971                                                                |
| Water solubility                                             | 170.5 mg/L at 25 °C, Handbook data from Yalkowsky SH and He Y, Aqueous solubility data, 2003                                                                                                                |
| Partition coefficient n-octanol/water (Log $K_{ow}$ )        | log K <sub>ow</sub> = 3.12, Hansch C, Leo A, Hoekman D., American Chemical Society, 1995                                                                                                                    |
| Flashpoint                                                   | 32 °C c.c., Handbook data from The Merck Index, An Encyclopedia of Chemicals, Drugs and Biologicals, 14th edition                                                                                           |
| Autoflammability<br>Auto-ignition temperature                | 463 °C, Handbook data from CRC handbook of chemistry and physics.<br>89th ed.                                                                                                                               |
| <b>Flammability</b><br>Flammability upon ignition (solids)   | Testing not necessary, substance is a liquid.                                                                                                                                                               |
| Flammability in contact with water and pyrophoric properties | The molecular structure of o-xylene does not contain any groups that<br>indicate potential reactivity with water or pyrophoric properties and<br>handling of the substance indicates that this is the case. |
| Lower and Upper Explosion limits                             | 0.9–6.7%, Handbook data from CRC handbook of chemistry and physics. 89th ed.                                                                                                                                |
| Explosive properties                                         | Non-explosive                                                                                                                                                                                               |
| Oxidising properties                                         | Non-oxidising                                                                                                                                                                                               |

| OVERVIEW OF PHYSICOCHEMICAL PROPERTIES OF M-XYLENE    |                                                                                                                                         |
|-------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| Property                                              | Value                                                                                                                                   |
| Physical state at 20 °C and 101.3 kPa                 | Colourless liquid                                                                                                                       |
| Melting/freezing point                                | -47.9 °C, Handbook data from CRC handbook of chemistry and physics. 89th ed.                                                            |
| Boiling point                                         | 139.1 °C, Handbook data from CRC handbook of chemistry and physics. 89th ed.                                                            |
| Vapour pressure                                       | 1106 Pa at 25 °C, Handbook data from Handbook of vapour pressures and heats of vapourisation of hydrocarbons and related compounds 1971 |
| Water solubility                                      | 146 mg/L at 25 °C, Handbook data from Handbook of aqueous solubility data 2003                                                          |
| Partition coefficient n-octanol/water (Log $K_{ow}$ ) | log K <sub>ow</sub> = 3.2, Hansch C., Leo A., Hoekman D., American Chemical Society, 1995                                               |
| Flashpoint                                            | 27 °C c.c., Handbook data from The Merck Index, An Encyclopedia of Chemicals, Drugs and Biologicals, 14th edition                       |
| Autoflammability<br>Auto-ignition temperature         | 527 °C, Handbook data from CRC handbook of chemistry and physics. 89th ed.                                                              |

| OVERVIEW OF PHYSICOCHEMIC                                                                                              | CAL PROPERTIES OF M-XYLENE                                                                                                                                                                                                                                   |
|------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Property                                                                                                               | Value                                                                                                                                                                                                                                                        |
| Flammability<br>Flammability upon ignition (solids)<br>Flammability in contact with water<br>and pyrophoric properties | Testing not necessary, substance is a liquid.<br>The molecular structure of m-xylene does not contain any groups<br>that indicate potential reactivity with water or pyrophoric properties<br>and handling of the substance indicates that this is the case. |
| Lower and Upper Explosion limits                                                                                       | 1.1-7%, Handbook data from CRC handbook of chemistry and physics. 89th ed.                                                                                                                                                                                   |
| Explosive properties                                                                                                   | Non-explosive                                                                                                                                                                                                                                                |
| Oxidising properties                                                                                                   | Non-oxidising                                                                                                                                                                                                                                                |

# 7.5. Manufacture and uses

# 7.5.1. Quantities

### Table 10

| AGGREGATED 1            | ONNAGE (PER YEA          | R) OF P-XYLENE         |                  |                   |
|-------------------------|--------------------------|------------------------|------------------|-------------------|
| 🗆 1 – 10 t              | 🗆 10 – 100 t             | 🗆 100 – 1000 t         | 🗆 1000- 10,000 t | 🗆 10,000-50,000 t |
| □ 50,000 -<br>100,000 t | □ 100,000 - 500,000<br>t | □ 500,000 - 1000,000 t | ⊠> 1000,000 t    | Confidential      |

## Table 11

| AGGREGATED 1            | ONNAGE (PER YEAR) OF   | O-XYLENE       |                  |                   |
|-------------------------|------------------------|----------------|------------------|-------------------|
| 🗆 1 – 10 t              | 🗆 10 – 100 t           | 🗆 100 – 1000 t | 🗆 1000- 10,000 t | 🗆 10,000-50,000 t |
| □ 50,000 -<br>100,000 t | ⊠ 100,000 – 1000,000 t | □ > 1000,000 t | Confidential     |                   |

# Table 12

| AGGREGATED T            | ONNAGE (PER YEAR) OF   | M-XYLENE       |                  |                   |
|-------------------------|------------------------|----------------|------------------|-------------------|
| 🗆 1 – 10 t              | 🗆 10 – 100 t           | 🗆 100 - 1000 t | 🗆 1000- 10,000 t | 🗆 10,000-50,000 t |
| □ 50,000 -<br>100,000 t | ⊠ 100,000 – 1000,000 t | □ > 1000,000 t | Confidential     |                   |

# **7.5.2.** Overview of uses

In Table 13, the identified uses for the xylene isomers according to the ECHA dissemination website are listed: last review by eMSCA in April 2020.

| USES OF O-,P- AND M-XYLENE |    |             |
|----------------------------|----|-------------|
| Use(s)                     |    |             |
| Uses as intermediate       |    |             |
| DE                         | 16 | August 2021 |

| USES OF O-,P- AND M-            | XYLENE                                                                                                                                                                                                                                                                                                                                                                               |
|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                 | Use(s)                                                                                                                                                                                                                                                                                                                                                                               |
| p-Xylene                        | <ul> <li>Use as an intermediate</li> <li>Intermediate/solvents – Manufacture of Intermediate under SCC</li> </ul>                                                                                                                                                                                                                                                                    |
| o-Xylene                        | <ul> <li>Use as an intermediate</li> <li>Intermediate/solvents – Manufacture of Intermediate under SCC</li> </ul>                                                                                                                                                                                                                                                                    |
| m-Xylene                        | Use as an intermediate                                                                                                                                                                                                                                                                                                                                                               |
| Formulation<br><i>p-Xylene</i>  | <ul> <li>Formulation &amp; (re)packing of substances and mixtures</li> <li>Distribution</li> <li>Use as a laboratory reagent</li> <li>Explosives manufacture and use</li> <li>Formulation &amp; (re)packing of substances and mixtures</li> </ul>                                                                                                                                    |
| o-Xylene                        | <ul> <li>Distribution</li> <li>Use as a laboratory reagent</li> <li>Explosives manufacture and use</li> </ul>                                                                                                                                                                                                                                                                        |
| Uses at industrial sites        | <ul> <li>Manufacture</li> <li>Distribution of a substance</li> </ul>                                                                                                                                                                                                                                                                                                                 |
| p-Xylene                        | <ul> <li>Uses in Coatings</li> <li>Uses in Cleaning Agents</li> <li>Use in Oil and Gas field drilling and production operation</li> <li>Use as binders and release agents</li> <li>Use as a fuel</li> <li>Rubber production and processing</li> <li>Explosives manufacture and use</li> <li>Use in Laboratories</li> </ul>                                                           |
| o-Xylene                        | <ul> <li>Manufacture</li> <li>Distribution of a substance</li> <li>Uses in Coatings</li> <li>Uses in Cleaning Agents</li> <li>Use in Oil and Gas field drilling and production operation</li> <li>Use as binders and release agents</li> <li>Use as a fuel</li> <li>Rubber production and processing</li> <li>Explosives manufacture and use</li> <li>Use in Laboratories</li> </ul> |
| m-Xylene                        | <ul><li>Manufacture</li><li>Distribution of a substance</li></ul>                                                                                                                                                                                                                                                                                                                    |
| Uses by professional<br>workers | Uses in Coatings                                                                                                                                                                                                                                                                                                                                                                     |
| p-Xylene                        | <ul> <li>Uses in Cleaning Agents</li> <li>Use in Oil and Gas field drilling and production operations</li> <li>Use as binders and release agents</li> <li>Use as a fuel</li> <li>Use in laboratories</li> </ul>                                                                                                                                                                      |
| o-Xylene                        | <ul> <li>Uses in Cleaning Agents</li> <li>Use in Oil and Gas field drilling and production operations</li> <li>Use as binders and release agents</li> <li>Use as a fuel</li> <li>Use in laboratories</li> </ul>                                                                                                                                                                      |
| Consumer Uses                   | Most of the Registrant(s) have deleted consumer uses in their registration dossiers after receipt of the substance evaluation decision.                                                                                                                                                                                                                                              |
|                                 | However, according to the information provided on the dissemination website within "Chemical Substance Search" (on 2015-12-02, status: latest update on 28 November 2015 and on 2019-05-02, latest update on 17 April 2019) by ECHA, the following consumer uses of the three xylene isomers (o-, m-, and p-) are recorded:                                                          |
|                                 | <ul> <li>Use in coatings:</li> <li>PC 1: Adhesives, sealants</li> <li>PC 4: Anti-freeze and de-icing products</li> <li>PC 8: Biocidal products (e.g. disinfectants, pest control)</li> </ul>                                                                                                                                                                                         |

| USES OF O-,P- AND M- | XYLENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                      | Use(s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                      | <ul> <li>PC 9a: Coatings and paints, thinners, paint removes</li> <li>PC 9b: Fillers, putties, plasters, modelling clay</li> <li>PC 9c: Finger paints</li> <li>PC 15: Non-metal-surface treatment products</li> <li>PC 18: Ink and toners</li> <li>PC 23: Leather tanning, dye, finishing, impregnation and care products</li> <li>PC 24: Lubricants, greases, release products</li> <li>PC 31: Polishes and wax blends</li> <li>PC 34: Textile dyes, finishing and impregnating products; including bleaches and other processing aids</li> <li>Use in cleaning products:</li> <li>PC 3: Air care products</li> <li>PC 4: Anti-freeze and de-icing products</li> <li>PC 35: Washing and cleaning products (including solvent based products)</li> <li>PC 35: Washing and cleaning products (with flux coatings or flux cores), flux products</li> <li>PC 38: Welding and soldering products (with flux coatings or flux cores), flux products</li> <li>PC 12: Fertilisers</li> <li>PC 27: Plant protection products</li> <li>Vse as a fuel</li> <li>PC 13: Fuels</li> </ul> |
| Article service life | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

# 7.5.2.1. Uses by workers/professionals

The three xylene isomers are important industrial chemicals which are used as intermediates in the manufacture of other substances and also as solvents, e.g. in mixtures for coatings, cleaning agents, or as oil field drilling agents. All of the three isomers are used in the industrial sector. p-Xylene and m-xylene are also used in the professional sector mainly in coatings, cleaning agents, binders, release agents and as fuels.

#### 7.5.2.2. Consumer use

In parallel to the substance evaluation process, the registrants conducted a downstream user survey regarding consumer uses, asking for product categories which should be further supported.

As a result, the registrants indicated to the eMSCA no need to support the consumer uses for o- and p-xylene in cleaning products and as agrochemicals any longer, as well as for the specific product categories 8 and 9c in coatings. Furthermore, they identified no consumer-related uses for m-xylene. They informed the German CA accordingly in October 2015.

Xylenes are used as solvents. Consumer products may be produced using only one of the xylene isomers, but use of mixed xylenes appears more likely in many cases. However, based on the above survey, the registrants identified consumer uses with o- and p- xylene and in fact the product data bases of Germany, Slovenia, Switzerland, and Sweden listed a small number of products for each of the three isomers. For some of these products it was not possible to distinguish between consumer and professional use.

In March 2016, the eMSCA noted that only very few registrants had updated their registration dossiers regarding the results of the downstream user survey, and that many of the consumer uses were still supported (see Table 13).

All national product databases list the isomers as a common ingredient of paints, lacquers, thinners, and removers. The purpose of the coatings seems to be mainly to protect wood and metals with different application methods, e.g. by spraying.

The SPIN database<sup>12</sup> indicated in 2013 a "probable exposure" with an "intermediate range of applications" (NO, SE) or a "very wide range of applications" (DK) and a "very probable use in article productions", respectively. The SPIN database has listed the following use categories: paints, lacquers and varnishes, adhesives, binding agents, fillers, reprographic agents, non-agricultural pesticides and preservatives, colouring agents, construction materials, fuels, and solvents.

# 7.6. Classification and Labelling

# 7.6.1. Harmonised Classification (Annex VI of CLP)

#### Table 14

| HARMONISED CLASSIFICATION ACCORDING TO ANNEX VI OF CLP REGULATION<br>(REGULATION (EC) 1272/2008) |                                                            |                                                                  |                                                              |                                                                 |                                                     |                                            |       |  |  |
|--------------------------------------------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------|--------------------------------------------|-------|--|--|
| Index No                                                                                         | International<br>Chemical<br>Identification                | EC No                                                            | CAS No                                                       | Classifica<br>Hazard Class<br>and Category<br>Code(s)           | Hazard                                              | Spec.<br>Conc.<br>Limits,<br>M-<br>factors | Notes |  |  |
| 601-022-00-9                                                                                     | o-xylene [1]<br>p-xylene [2]<br>m-xylene [3]<br>xylene [4] | 202-422-2 [1]<br>203-396-5 [2]<br>203-576-3 [3]<br>215-535-7 [4] | 95-47-6 [1]<br>106-42-3 [2]<br>108-38-3 [3]<br>1330-20-7 [4] | Flam. Liq. 3<br>Acute Tox. 4*<br>Acute Tox. 4*<br>Skin Irrit. 2 | H226<br>H332<br>H312<br>H315                        | *                                          | С     |  |  |
| 601-023-00-4                                                                                     | ethylbenzene                                               | 202-849-4                                                        | 100-41-4                                                     | Flam. Liq. 2;<br>Acute Tox. 4*;<br>STOT RE 2<br>Asp. Tox 1      | H225<br>H332<br>H373<br>(hearing<br>organs)<br>H304 |                                            |       |  |  |

Note C: Some organic substances may be marketed either in a specific isomeric form or as a mixture of several isomers.

# 7.6.2. Self-classification

Below, self-classifications for xylene (mixed isomers), the individual xylene isomers, and ethylbenzene are reported as obtained from the ECHA dissemination website on 30 April 2019:

<sup>&</sup>lt;sup>12</sup> SPIN: "Substances in Preparations in Nordic Countries": http://spin2000.net/

#### Substance Evaluation Conclusion document

#### xylene (mixed xylenes, EC 215-535-7):

| Breakdown of a      | ali 4923 | 2 C&L | notific | ations  | subm | itted t | o ECł | łA       |       |     |               | 9   |
|---------------------|----------|-------|---------|---------|------|---------|-------|----------|-------|-----|---------------|-----|
| Acute Tox. 4        | +552     | 4     |         |         |      |         |       |          |       |     |               |     |
| Site int 2          | 1915     | 1     |         |         |      |         |       |          |       |     |               |     |
| Plant Liq 3         | 1028     | 1     |         |         |      |         |       |          |       |     |               |     |
| Acuté Tox. 4        | H312     | 4     |         |         |      |         |       |          |       |     |               |     |
| Eye Int. 2          | 1019     |       |         |         |      |         |       |          |       |     |               |     |
| stor st a           | 1023     |       |         |         |      |         |       |          |       |     |               |     |
| Asp. Ton. 7         | 1004     |       |         |         |      |         |       |          |       |     |               |     |
| STOTALS             | +1373    |       |         |         |      |         |       |          |       |     |               |     |
| Aquatic Chranic 3   | 10412    |       |         |         |      |         |       |          |       |     |               |     |
| Aqualit: Chronit: 2 | 1411     |       |         |         |      |         |       |          |       |     |               |     |
| 8101863             | +1336    |       |         |         |      |         |       |          |       |     |               |     |
| Not Classified      |          |       |         |         |      |         |       |          |       |     |               |     |
| Magie 18            | 6360     |       |         |         |      |         |       |          |       |     |               |     |
| STOT SE1            | #870     |       |         |         |      |         |       |          |       |     |               |     |
| BTOT RE 1           | 4872     |       |         |         |      |         |       |          |       |     |               |     |
| (#)                 |          | a     | 36      | 20%     | ión. | 40%     | 30%   | 00%      | 30%   | 80% | in the second | 100 |
|                     |          | -     | Hanna   | rised ( |      | leatio  |       | lificati | 0.011 |     |               |     |

CLP eachireations O At least one notifier has indicated that an inpurity or an additive present in the substance impacts

m-xylene (EC 203-576-3):


the writified classification

#### o-xylene (EC 202-422-2):

| 209323.6          |       |   | in. | tim | 229 | 30% | 4(7), | sin. | 60% | 105 | 80%. | 90% | 100 |
|-------------------|-------|---|-----|-----|-----|-----|-------|------|-----|-----|------|-----|-----|
| Gept 2            | H367  |   |     |     |     |     |       |      |     |     |      |     |     |
| 8707 RE 2         | 4878  |   |     |     |     |     |       |      |     |     |      |     |     |
| Aqualic Ovenic 1  | H410  |   |     |     |     |     |       |      |     |     |      |     |     |
| Aquatic Acute 1   | HADD  |   |     |     |     |     |       |      |     |     |      |     |     |
| stut se s         | 11336 |   |     |     |     |     |       |      |     |     |      |     |     |
| Aquatic Chronic 3 | 8412  |   |     |     |     |     |       |      |     |     |      |     |     |
| Asp. Tox. 1       | +1904 |   |     | 1.  |     |     |       |      |     |     |      |     |     |
| STOT SE 3         | #335  |   |     |     |     |     |       |      |     |     |      |     |     |
| Flam, Liq. 2      | H225  |   |     |     |     |     |       |      |     |     |      |     |     |
| Eye mit. 2        | H319  |   |     | 1   |     |     |       |      |     |     |      |     |     |
| Flam. Lity 3.     | 4226  | 1 |     |     |     |     |       |      |     |     |      |     |     |
| Acute Tox 4       | 4882  | 1 |     |     |     |     |       |      |     |     |      |     |     |
| Acute Tox. 4      | H812  | + |     |     |     |     |       |      |     |     |      |     |     |
| Shin Irrit, 2     | H315  | 1 |     |     |     |     |       |      |     |     |      |     |     |

#### p-xylene (EC 203-396-5):

| Flam, Liq 3       | H226  | 1 |     |     |      |     |     |     |     |     |     |     |      |
|-------------------|-------|---|-----|-----|------|-----|-----|-----|-----|-----|-----|-----|------|
| Shin Inf. 2       | HISTS | 1 |     |     |      |     |     |     |     |     |     |     |      |
| Acute Tox, 4      | H912  | 1 |     |     |      |     |     |     |     |     |     |     |      |
| Acute Tos. 4      | 1022  | 1 |     |     |      |     |     |     |     |     |     |     |      |
| Asp. Tox 1        | HSDA  |   | 10  |     |      |     |     |     |     |     |     |     |      |
| Ear Darn 1        | H918  |   |     |     |      |     |     |     |     |     |     |     |      |
| Eye krift, 2      | HS19  |   | 11  |     |      |     |     |     |     |     |     |     |      |
| STOT SE 3         | H925  |   | 10  |     |      |     |     |     |     |     |     |     |      |
| Aquatic Chronic 3 | 14412 |   | 81. |     |      |     |     |     |     |     |     |     |      |
| STOT HE 2         | H879  |   |     |     |      |     |     |     |     |     |     |     |      |
| Hope 2            | H361  |   |     |     |      |     |     |     |     |     |     |     |      |
| stot se s         | H336  |   |     |     |      |     |     |     |     |     |     |     |      |
|                   |       |   | 15  | 104 | 2275 | 10% | 40% | 58% | 60% | 70% | 80% | 10% | 1003 |



#### ethylbenzene (EC 202-849-4):

**CLP** notifications

|                   |       | 1 |    |     |     |     | toesie |     | lificati | one |     |     |      |
|-------------------|-------|---|----|-----|-----|-----|--------|-----|----------|-----|-----|-----|------|
|                   |       |   | 0% | 30% | 30% | 30% | 425    | 30% | 68%      | 70% | 80% | 90% | 1001 |
| Asp. Tojc 2       | +1304 |   |    |     |     |     |        |     |          |     |     |     |      |
| Not Classified    |       |   |    |     |     |     |        |     |          |     |     |     |      |
| Noute Tax 4       | 1002  |   | 1  |     |     |     |        |     |          |     |     |     |      |
| Flam Liq 1        | 10220 |   |    |     |     |     |        |     |          |     |     |     |      |
| Acute Tox. 8      | +412  |   |    |     |     |     |        |     |          |     |     |     |      |
| Caro, 2           | 14351 |   |    |     |     |     |        |     |          |     |     |     |      |
| STOT SE 3         | +1338 |   |    |     |     |     |        |     |          |     |     |     |      |
| ETOT SE 3         | +1322 |   |    |     |     |     |        |     |          |     |     |     |      |
| Skin Wit. 2       | 1015  |   |    |     |     |     |        |     |          |     |     |     |      |
| Epei Itrifi. 2    | 1011  |   |    |     |     |     |        |     |          |     |     |     |      |
| Aquatic Chronic 3 | +4412 |   | 1  |     |     |     |        |     |          |     |     |     |      |
| STOT RE 2         | +873  | 1 | 11 |     |     |     |        |     |          |     |     |     |      |
| Alip. Tote 1      | 1004  | 1 |    |     |     |     |        |     |          |     |     |     |      |
| Acute Tex. 4      | +837  | 4 | 1  |     |     |     |        |     |          |     |     |     |      |
| Flim Liq 2        | +5225 | 4 |    |     |     |     |        |     |          |     |     |     |      |

the notified classification

# 7.7. Environmental fate properties

Not assessed in this evaluation.

# 7.8. Environmental hazard assessment

Not assessed in this evaluation.

# **7.9. Human health hazard assessment**

#### Introductory notes

The following parameters have been used for dose conversion:

1 mg xylene isomer/m $^3$  is equivalent to 0.23 ppm. Conversely, 1 ppm xylene isomer corresponds to 4.40 mg/m $^3$ 

Where needed, the following specific weight values were used:

o-Xylene: 0.881 g/mL, m-xylene: 0.866 g/mL, p-xylene: 0.861 g/mL, ethylbenzene: 0.867 g/mL, and mixed xylenes: ~0.86 g/mL (Römpp, 2015).

In many older publications, purity of the test material was only reported verbally, therefore the following assumptions were made:

"Laboratory grade" is assumed to refer to at least 95% purity, "analytical grade" is assumed to refer to at least 99% purity.

The final data matrix containing the key results for each endpoint for the five substances in the category (o-, m-, p-xylene, ethylbenzene, xylene) considered during the assessment by the eMSCA can be found in section 7.9.10. A tabular documentation of the assessment of the read-across/category approach according to ECHA's Read-Across Assessment Framework RAAF, (ECHA, 2017) is provided in Annex 1 (section 7.16).

A number of reviews on the toxicity of xylenes are available in the published literature e.g. (ACGIH, 2001; ATSDR, 2007; Bang, 1984; Bell et al., 1992; Bonde, 1992; Crookes et al., 1993; DECOS, 1991; ECETOC, 1986; ECETOC, 1997; Health Council of the Netherlands, 2001; IARC, 1989; Kandyala et al., 2010; Low et al., 1989; NIWL, 2005; USEPA, 1989; Vainio et al., 1985; Ware, 1988; WHO, 1997; Wiger, 1992). A summary of most of the studies reviewed for this SEv report can be found in these papers, therefore only a tabular overview is provided in the subsequent sections.

# 7.9.1. Toxicokinetics

#### 7.9.1.1. Non-human data

| SUMMARY OF STUDIES ON TOXICOKINETICS, NON-HUMAN DATA                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |                               |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------------------------|--|
| Method/Study Type/Test<br>substances                                                                                                                                                                                                                                                                                              | Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Remarks | Source                        |  |
|                                                                                                                                                                                                                                                                                                                                   | Absorption & Distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         |                               |  |
|                                                                                                                                                                                                                                                                                                                                   | Oral                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |                               |  |
| Single oral dose o-, m-, or p-<br>xylene, gavage, 8.47 mmol/kg<br>bw, SD rat<br>Repeated oral dose o-, m-, or p-<br>xylene, gavage, 8.47 mmol/kg<br>bw, 2 wk, 5 d/wk. SD rat<br>Single oral dose m-xylene,<br>gavage, 16.94 mmol/kg bw, SD<br>rat<br>Repeated dose m-xylene,<br>gavage, 16.94 mmol/kg bw, 2<br>wk, 5 d/wk, SD rat | After single or repeated administration of<br>8.47 mmol p-xylene /kg bw to rats,<br>blood/brain C <sub>max</sub> and AUC were much<br>higher (brain: almost 2-fold) than with o-<br>/m-xylene<br>Depending on the isomer, T <sub>max</sub> was in the<br>range of 2-4 h after single administration<br>(smallest for p-xylene).<br>Single administration of 16.94 mmol m-<br>xylene/kg bw yielded a comparable C <sub>max</sub><br>but a 2-fold higher AUC as compared to<br>8.47 mmol p-xylene/kg bw.<br>For all xylene isomers, at 8.47 mmol /kg<br>bw, blood and brain levels after repeated | None    | (Gagnaire<br>et al.,<br>2007) |  |

| Method/Study Type/Test<br>substances                                                                                           | Results                                                                                                                                                                   | Remarks                                  | Source                        |
|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-------------------------------|
| Single oral dose p-xylene,<br>gavage, 8.47 mmol/kg bw,<br>guinea pigs                                                          | exposure were $\leq$ those obtained after single administration.                                                                                                          |                                          |                               |
| guinea pigs<br>Repeated oral dose p-xylene,<br>gavage, 8.47 mmol/kg bw, 2 wk,<br>5 d/wk. guinea pig                            | Repeated administration of 16.94 mmol m-xylene/kg bw yielded C <sub>max</sub> and AUC values comparable to those obtained with 8.47 mmol/kg bw p-xylene.                  |                                          |                               |
| Repeated oral dose p-xylene,<br>gavage, 16.94 mmol/kg bw, 2<br>wk, 5 d/wk, guinea pig                                          | The ratio between brain and blood levels<br>expressed as $\mu g/g$ (blood) or $\mu g/g$<br>(brain) was found to be around 2-3 at all<br>dose levels and most time points. |                                          |                               |
| Single exposure p-xylene via<br>whole-body inhalation, 1800<br>ppm, 4 h, SD rat                                                | Regardless of dosing scheme, C <sub>max</sub> and AUC in rats were always found to be much higher than those in guinea pigs.                                              |                                          |                               |
| Single exposure p-xylene via<br>whole-body inhalation, 1800<br>ppm, 4 h, guinea pig                                            |                                                                                                                                                                           |                                          |                               |
| Purity: > 99% (all isomers)                                                                                                    |                                                                                                                                                                           |                                          |                               |
|                                                                                                                                | Dermal                                                                                                                                                                    |                                          |                               |
| Dermal absorption in hairless rat<br>skin in vitro                                                                             | Steady state flux reported as 0.22 mg/cm <sup>2</sup> /h                                                                                                                  | Identity of test<br>substance<br>unclear | (Ahaghotu<br>et al.,<br>2005) |
| Xylene                                                                                                                         | Steady state reached after ~ 4 h under<br>"infinite dose" scenario                                                                                                        | unciear                                  | 2005)                         |
| Purity: 98.0%                                                                                                                  | Cf. section 7.9.1.3 for a more detailed discussion                                                                                                                        |                                          |                               |
|                                                                                                                                | Inhalation                                                                                                                                                                |                                          |                               |
| Inhalation kinetics study in SD<br>rats<br>12 h/d, 1-3 d<br>Samples were taken immediately<br>after end of exposure on days 1- | Blood<br>1 d: $9.1 \pm 1.4 \mu mol/kg$<br>2 d: $7.8 \pm 1.3 \mu mol/kg$<br>3 d: $10.3 \pm 0.9 \mu mol/kg$<br>Recovery: $0.1 \pm 0.1 \mu mol/kg$                           |                                          | (Zahlsen et<br>al., 1992)     |
| 3 and 12 h after exposure on d 3<br>("recovery")<br>o-Xylene, purity > 99%,<br>100 ppm                                         | Brain<br>1 d: 22.4 $\pm$ 0.4 µmol/kg<br>2 d: 22.6 $\pm$ 3.0 µmol/kg<br>3 d: 28.6 $\pm$ 7.3 µmol/kg<br>Recovery: not detected                                              |                                          |                               |
|                                                                                                                                | Liver<br>1 d: 13.5 $\pm$ 1.0 µmol/kg<br>2 d: 14.3 $\pm$ 0.6 µmol/kg<br>3 d: 22.4 $\pm$ 4.6 µmol/kg<br>Recovery: 0.2 $\pm$ 0.1 µmol/kg                                     |                                          |                               |
|                                                                                                                                | Kidney<br>1 d: 63.2 ± 7.9 μmol/kg<br>2 d: 76.2 ± 32.7 μmol/kg<br>3 d: 95.2 ± 47.0 μmol/kg<br>Recovery: 1.5 ± 0.7 μmol/kg                                                  |                                          |                               |
|                                                                                                                                | Perirenal fat<br>1 d: 1173 ± 126 μmol/kg<br>2 d: 1108 ± 71 μmol/kg<br>3 d: 1228 ± 253 μmol/kg<br>Recovery: 71 ± 35 μmol/kg                                                |                                          |                               |
|                                                                                                                                | Metabolism & Excretion                                                                                                                                                    |                                          |                               |

| Method/Study Type/Test<br>substances                                                                                | Results                                                                                                                                                                                                                                                                                            | Remarks | Source                            |
|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------------------------------|
| Toxicokinetics in phenobarbital<br>pre-treated rats vs. control<br>m-Xylene, purity not reported                    | Metabolism <i>in vitro</i> increased by PB pre-<br>treatment already at the lower dose of<br>0.01 mL/kg (8.64 mg/kg or<br>0.081 mmol/kg)                                                                                                                                                           | None    | (Kaneko et<br>al., 1995)          |
|                                                                                                                     | Inhalation                                                                                                                                                                                                                                                                                         |         |                                   |
| Effect on enzymes in vitro                                                                                          | In vitro:                                                                                                                                                                                                                                                                                          | None    | (Toftgard                         |
| (kidney, liver, lung microsomes)<br>and in vivo (rat, 3-d inhalation)<br>o-Xylene (purity > 99%)                    | Increased O-deethylation of 7-<br>ethoxyresorufin, hydroxylation of n-<br>hexane and benzo[a]pyrene                                                                                                                                                                                                | None    | and Nilsen,<br>1982)              |
| m-Xylene (purity 98,7%)<br>p-Xylene (purity > 99%)                                                                  | In vivo:                                                                                                                                                                                                                                                                                           |         |                                   |
| Xylene (2% o-, 64.5% m-, 10%<br>p-xylene, 23% ethylbenzene)                                                         | Induction of P450 and NADPH-<br>cytochrome c reductase                                                                                                                                                                                                                                             |         |                                   |
| Ethylbenzene (purity > 99%)<br>200 ppm each                                                                         | m-Xylene strongest, p-xylene less potent<br>regarding P450 than the other test<br>chemicals                                                                                                                                                                                                        |         |                                   |
|                                                                                                                     | Enzyme induction of phenobarbital type                                                                                                                                                                                                                                                             |         |                                   |
| Metabolism study (5 d, 6 h/d,<br>rat, inhalation)                                                                   | Major metabolites of m-xylene:<br>methylhippuric acid, dimethylphenols,<br>methylbenzyl alcohol                                                                                                                                                                                                    | None    | (Elovaara e<br>al., 1984)         |
| Mixtures of m-xylene and<br>ethylbenzene (purity not<br>reported)                                                   | "In conclusion, the mutual effects<br>characteristic for mixed exposure to XYL<br>+ EB were, in a conspicuous manner,                                                                                                                                                                              |         |                                   |
| (0/75+25/300+100/600+200<br>ppm)                                                                                    | enhanced with the dose."                                                                                                                                                                                                                                                                           |         |                                   |
| Study on pulmonary microsomal<br>alterations,SD rats, 300 ppm, 6<br>h/d, for 1, 3, or 5 d<br>p-Xylene, purity 99.7% | Initial increase in conjugated dienes,<br>decrease in P450 content,<br>benzyloxyresorufin O-dealkylase, 2-<br>aminofluorene N-hydroxylase, and<br>extracellular surfactant                                                                                                                         | None    | (Silverman<br>and Schatz<br>1991) |
|                                                                                                                     | Returned to normal by day 3 except for 2-aminofluorene N-hydroxylase                                                                                                                                                                                                                               |         |                                   |
|                                                                                                                     | Core membrane fluidity and aryl<br>hydrocarbon hydroxylase (AHH)<br>increased after 3 d. AHH increased by<br>41% after 5 d.                                                                                                                                                                        |         |                                   |
| Metabolism in vivo (6 h<br>inhalation of 300 ppm by Wistar<br>rats, either pretreated (1 h/d,                       | Blood concentration at end of exposure:<br>Untreated: 135 $\pm$ 10 µmol/L<br>Pre-treated: 148 $\pm$ 16 µmol/L                                                                                                                                                                                      | None    | (Liira et al.,<br>1991)           |
| 6 d) or untreated)<br>m-Xylene, 99%, 300 ppm                                                                        | Concentration in perirenal fat at end of<br>exposure:<br>Untreated: $2.49 \pm 0.57 \ \mu mol/g$<br>Pre-treated: $1.77 \pm 0.26 \ \mu mol/L$<br>Concentration in perirenal fat 12 h after<br>end of exposure:<br>Untreated: $0.31 \pm 0.20 \ \mu mol/g$<br>Pre-treated: $0.33 \pm 0.12 \ \mu mol/L$ |         |                                   |
|                                                                                                                     | Urinary metabolites:<br>Methylhippuric acid (MHA)<br>2,4-Diphenol (2,4-DMP)                                                                                                                                                                                                                        |         |                                   |
|                                                                                                                     | Urinary excretion of MHA during and<br>after exposure (n=6):<br>0-6.5 h, untreated: $115 \pm 8 \mu mol/animal$<br>6.5-24 h: 141 ± 30 $\mu moL/animal$<br>0-6.5 h, pre-treated:<br>104 ± 29 $\mu mol/animal$                                                                                        |         |                                   |

| SUMMARY OF STUDIES ON                                                                                                                                            | TOXICOKINETICS, NON-HUMAN DA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ТА                                                                                   |                                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------|
| Method/Study Type/Test substances                                                                                                                                | Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Remarks                                                                              | Source                         |
|                                                                                                                                                                  | Urinary excretion of 2,4-DMP during and<br>after exposure (n=6):<br>0-6.5 h, untreated:<br>14.4 $\pm$ 1.6 µmol/animal<br>6.5-24 h: 19.3 $\pm$ 3.6 µmoL/animal<br>0-6.5 h, pre-treated: 13.6 $\pm$ 4.5<br>µmol/animal<br>6.5-24 h: 27.5 $\pm$ 5.8 µmoL/animal<br>Urinary excretion of thioethers (n=6):<br>0-6.5 h, untreated:<br>1.28 $\pm$ 0.4 µmol/animal<br>6.5-24 h: 4.06 $\pm$ 2.60 µmoL/animal<br>0-6.5 h, pre-treated: 1.05 $\pm$ 0.78<br>µmol/animal<br>6.5-24 h: 2.80 $\pm$ 2.36 µmoL/animal<br>Urinary excertion and aniline<br>hydroxylase slighty lower, P450<br>indifferent, PROD, EROD, ECOD higher<br>compared to control (n=6) |                                                                                      |                                |
| Toxicokinetics in phenobarbital<br>pre-treated rats vs. control after<br>oral administration<br>m-Xylene, purity not reported                                    | Metabolism increased by PB pre-<br>treatment, significant effect of enzyme<br>induction only at high dose (400 ppm),<br>not at the low dose (40 ppm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | None                                                                                 | (Kaneko et<br>al., 1995)       |
|                                                                                                                                                                  | Other routes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                      |                                |
| Effect on liver glutathione in<br>Wistar rats in vitro and in vivo<br>(i.p. administration)<br>o-, m-, and p-Xylene, purity not<br>reported (presumed to be 99%) | <i>In vitro</i> :<br>No direct conjugation of o-xylene with<br>glutathione in vitro, but conjugation after<br>bioactivation (not specified)<br><i>In vivo</i> :<br>Hepatic glutathione reduction vs. control:<br>ca. 35% for m- and p-xylenes, ca. 75%<br>for o-xylene<br>Metabolism - Excretion of thioethers:<br>o-xylene >>> m-xylene > p-xylene<br>o-Xylene: Thioether characterised as<br>mercapturic acid. Only minor amounts of<br>mercapturic acids formed for m-/p-<br>xylene                                                                                                                                                         | None                                                                                 | (van Doorn<br>et al.,<br>1980) |
| Subacute i.p. study in rats<br>3 d, 10 mmol/kg bw<br>m-Xylene, purity > 99%<br>p-Xylene,purity > 99%<br>Ethylbenzene, purity > 99%                               | Small differences in activity<br>Treatment caused slight increases in<br>body wt, liver wt<br>m-Xylene caused slightly stronger effects<br>than p-xylene but relevance and<br>significance are unclear<br>10 mmol/kg bw x 3 d is a LOEC                                                                                                                                                                                                                                                                                                                                                                                                        | Not relevant for<br>quantitative<br>risk assessment<br>due to i.p.<br>administration | (Backes et<br>al., 1993)       |

| SUMMARY OF STUDIES ON TOXICOKINETICS, NON-HUMAN DATA                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         |                          |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------------------------|--|
| Method/Study Type/Test<br>substances                                                                                                                               | Results                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Remarks | Source                   |  |
| Study on the induction of mixed<br>functional oxidases (CYP450,<br>AHH) in liver and lung (SD rats,<br>acute i.p. injection, 1 g/kg bw)<br>o-Xylene (purity 99.7%) | Blood<br>$T_{max}$ : 1 h post-dose<br>$C_{max}$ : 0.482 ± 0.061 µmol/g<br>Liver<br>$T_{max}$ : 3 h post-dose<br>$C_{max}$ : 2.720 ± 0.790 µmol/g<br>Total P450 increased, CYP1A1 activity<br>(EROD) slightly and CYP2B1 activity<br>(BROD) markedly increased at 6 and<br>12 h p.a.<br>Lung<br>$T_{max}$ : 3 h post-dose<br>$C_{max}$ : 0.899 ± 0.194 µmol/g<br>Total P450, CYP1A1, CYP2B1 and AHH<br>activity decreased at all time points,<br>max. at 3 h p.a. | None    | (Park et al.,<br>1994)   |  |
| Toxicokinetics in phenobarbital<br>pre-treated rats vs. control after<br>i.p. administration<br>m-Xylene, purity not reported                                      | Metabolism <i>in vitro</i> increased by PB pre-<br>treatment, significant effect of enzyme<br>induction only at high dose (400 ppm),<br>not at the low dose (40 ppm)                                                                                                                                                                                                                                                                                             | None    | (Kaneko et<br>al., 1995) |  |

# 7.9.1.2. Human data

| SUMMARY OF STUDIES ON TOXICOKINETICS, HUMAN DATA                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                          |                            |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------|--|
| Method/Study Type                                                                                                                                                                    | Results                                                                                                                                                                                                                                                                                                                                                                                                          | Remarks                                                                  | Source                     |  |
|                                                                                                                                                                                      | Absorption & Distribution                                                                                                                                                                                                                                                                                                                                                                                        |                                                                          |                            |  |
|                                                                                                                                                                                      | Dermal                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                          |                            |  |
| Dermal absorption, immersion of<br>one or both hands into m-xylene<br>for 15 min<br>m-Xylene, 95%                                                                                    | Rapid absorption, peak concentration<br>in venous blood draining the site of<br>exposure reached 4-6 min post-<br>exposure<br>Absorption rate estimated at ~2<br>µg/cm <sup>2</sup> /min (~120 µg/cm <sup>2</sup> /h), basis<br>for estimation is however unclear<br>Three times higer absorption in<br>individual with hand eczema<br>Excretion of m-methylhippuric acid<br>detectable until 72 h post-exposure | "Infinite dose"<br>experiment,<br>complete mass<br>balance is<br>missing | (Engström et<br>al., 1977) |  |
| Dermal absorption, immersion of<br>one or both hands into m-xylene<br>for 15 min<br>m-Xylene (purity: 95%), m-<br>xylene + isobutanol, m-xylene +<br>isobutanol + water              | Analogous to results by (Engström et<br>al., 1977), cf. above<br>Mixture results not relevant for this<br>evaluation.                                                                                                                                                                                                                                                                                            | None                                                                     | (Riihimäki,<br>1979)       |  |
| Dermal absorption in human<br>volunteers, 27 cm <sup>2</sup> , for 3 min<br>Inhalation exposure, 40 nmol/L<br>(~4.2 mg/m <sup>3</sup> ), for 10 min<br>m-Xylene, purity not reported | Fast permeation<br>Flux within the exposure period:<br>46 nmol/cm <sup>2</sup> /min (~5 µg/cm <sup>2</sup> /min,<br>~300 µg/cm <sup>2</sup> /h)                                                                                                                                                                                                                                                                  | Flux: Steady<br>state reached?<br>Metabolism not<br>accounted for        | (Kezic et al.,<br>2001)    |  |

| SUMMARY OF STUDIES ON TOXICOKINETICS, HUMAN DATA                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                   |                                                                                                                         |                                   |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-----------------------------------|--|
| Method/Study Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Results                                                                                                                                                                                                                                                           | Remarks                                                                                                                 | Source                            |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                   | Divergent<br>statements on air<br>concentration in<br>inhalation<br>experiment                                          |                                   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                   | Overall<br>considered<br>unreliable                                                                                     |                                   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Inhalation                                                                                                                                                                                                                                                        |                                                                                                                         |                                   |  |
| Metabolism study, inhalation 8 h<br>at $\sim 0.2$ mg/L or $\sim 0.4$ mg/L o-,<br>m-, p-xylene alone or to a 1:1:1<br>mixture of these isomers by<br>male volunteers                                                                                                                                                                                                                                                                                                                          | Pulmonary retention ~ 60-70%<br>Main metabolite fraction (95-99%)<br>consists of methylhippuric acids (MHA)                                                                                                                                                       | None                                                                                                                    | (Šedivec and<br>Flek, 1976)       |  |
| Purity not reported                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MHA levels decrease strongly after end<br>of exposure, ~ 70% excretion within<br>24 h, trace amounts observable after<br>4-5 d                                                                                                                                    |                                                                                                                         |                                   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Minor metabolite fractions contain xylenols                                                                                                                                                                                                                       |                                                                                                                         |                                   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | In the mixture, p-xylene was<br>metabolised faster than the other two<br>isomers.                                                                                                                                                                                 |                                                                                                                         |                                   |  |
| Inhalation absorption for a total<br>of 2 h (140 min, including 20<br>min break after 30 min), male<br>volunteers<br>870 mg/m <sup>3</sup> (~198 ppm) for<br>30 min at rest, followed by a<br>20 min break, followed by a<br>20 min at 50 W (light activity)<br>435 mg/m <sup>3</sup> (~99 ppm) for<br>30 min at rest followed by each<br>30 min at 50, 100, and 150 W<br>(moderately heavy activity)<br>Xylene: o-xylene: 8.8%, m-<br>xylene: 49.4%, p-xylene: 1.4%,<br>ethylbenzene: 40.4% | Absorption ~ 60% of inhaled dose<br>Expired xylene amounted to ~ 4-5%<br>Increase of xylene blood levels with<br>higher workload<br>Arterial blood/alveolar air partitioning<br>coefficient: ~ 30-40 after about 1 h of<br>exposure under exercise, lower at rest | Not reliable for<br>quantitative risk<br>assessment<br>(incomplete mass<br>balance,<br>metabolism not<br>accounted for) | (Åstrand et<br>al., 1978)         |  |
| Biomonitoring in 4 female<br>histology laboratory assistants<br>exposed to average<br>Median ambient air<br>concentrations:                                                                                                                                                                                                                                                                                                                                                                  | Blood levels (mg/L) at end of working<br>day:<br>Workplace 1: Ethylbenzene: 0.7-0.8,<br>o-xylene: ~ 0.2,<br>(m+p)-xylene: 1.2-1.5                                                                                                                                 | None                                                                                                                    | (Angerer and<br>Lehnert,<br>1979) |  |
| Workplace 1 (3 F): 42 ppm EB,<br>12 ppm o-xylene, 70 ppm m- +<br>p-xylene                                                                                                                                                                                                                                                                                                                                                                                                                    | Workplace 2: Ethylbenzene: 0.5,<br>o-xylene: ~ 0.1, (m+p)-xylene: ~ 1.0<br>2-Ethylphenol identified as                                                                                                                                                            |                                                                                                                         |                                   |  |
| Workplace 2 (1 F): 37 ppm EB,<br>11 ppm o-xylene, 61 ppm m- +<br>p-xylene                                                                                                                                                                                                                                                                                                                                                                                                                    | ethylbenzene metabolite, whereas<br>2,4 dimethyl phenol was not found                                                                                                                                                                                             |                                                                                                                         |                                   |  |
| Xylene: 6.72% o-xylene,<br>52.63% m-xylene, 15.24% p-<br>xylene, 25.25% ethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                   |                                                                                                                         |                                   |  |

| Method/Study Type                                                                                                                                                                                                                                                                                                                              | Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Remarks                                                                                                                                                              | Source                              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|
| Method/Study Type<br>Toxicokinetics in 6 male<br>volunteers following inhalation<br>exposure, for 4 h<br>Xylene, composition and purity<br>not reported,<br>200 mg/m <sup>3</sup> , mean absolute dose<br>received: 355.6 (296.2 – 459.2)<br>mg,<br>Ethylbenzene, purity not<br>reported, 20 – 200 mg/m <sup>3</sup> ),<br>purity not reported | Results Excretion modelled to follow biphasic pattern Wide variability in blood and urine levels of xylene, methylhippuric acid, and ethylbenzene. Not usable for quantitative risk assessment                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Remarks<br>Composition of<br>test material<br>unclear<br>Reporting of<br>results for EB<br>ambiguous (two<br>dose levels were<br>tested, only one<br>result reported | Source<br>(Janasik et<br>al., 2008) |
| Inhalation toxicokinetics study in<br>5 male volunteers, 1 x 6 h/d, at<br>12.5 and 25 ppm (1/8 or 1/4 of<br>Camadian time-weighted<br>average exposure value,<br>TWAEV), with 1 wk break<br>between exposures<br>m-Xylene (≥ 99% purity)<br>Ethylbenzene (purity 99%)                                                                          | Principal verification and improvement<br>of PBTK models for the time-course of<br>exhaled unchanged parent (m-xylene,<br>EB) and typical metabolite biomarkers<br>(m-MHA, mandelic acid, MA) in urine.<br>Exhaled parents: Concentrations<br>approaching steady state towards end<br>of exposure period. Doubling exposure<br>concentrations roughly produced 2-fold<br>concentrations. Comparable levels for<br>m-xylene and ethylbenzene<br>Urinary metabolites:<br>Concentrations approaching steady<br>state 24 h p.a. Doubling exposure<br>concentrations roughl y produced 2-<br>fold concentrations. Comparable levels<br>for m-MHA and MA | None                                                                                                                                                                 | (Marchand et<br>al., 2015)          |
|                                                                                                                                                                                                                                                                                                                                                | Metabolism & Excretion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                      |                                     |
|                                                                                                                                                                                                                                                                                                                                                | Inhalation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                    |                                     |
| Metabolism study, inhalation 3 h<br>or 3 h/1 h break/4 h<br>m-, p-Xylene, purity not<br>reported                                                                                                                                                                                                                                               | Demonstration of the formation of<br>methylhippuric acids as metabolites of<br>m- and p-xylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | None                                                                                                                                                                 | (Ogata et al.,<br>1970)             |

# SUMMARY OF STUDIES ON TOXICOKINETICS, HUMAN DATA

| Method/Study Type                                                                                                                                                | Results                                                                                                                                     | Remarks                                                                                                                                                                    | Source                           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| Metabolism study, inhalation 8 h<br>at ~0.2 mg/L or ~0.4 mg/L to<br>o-,m-, p-xylene alone or to a                                                                | Pulmonary retention ~ 60-70%<br>Main metabolite fraction (95-99%)                                                                           | None                                                                                                                                                                       | (Šedivec and<br>Flek, 1976)      |
| 1:1:1 mixture of these isomers<br>by male volunteers                                                                                                             | consists of methylhippuric acids (MHA)<br>MHA levels decrease strongly after end                                                            |                                                                                                                                                                            |                                  |
| Purity not reported                                                                                                                                              | of exposure, ~70% excretion within 24<br>h, trace amounts observable after 4-5<br>d                                                         |                                                                                                                                                                            |                                  |
|                                                                                                                                                                  | Minor metabolite fractions contain xylenols                                                                                                 |                                                                                                                                                                            |                                  |
|                                                                                                                                                                  | In the mixture, p-xylene was metabolised faster than the other two isomers.                                                                 |                                                                                                                                                                            |                                  |
| Biomonitoring of 121 workers<br>employed in dip-coating of<br>metals                                                                                             | Metabolites identified:<br>Xylenes: MHA<br>Toluene: Hippuric acid, Ethylbenzene:                                                            | None                                                                                                                                                                       | (Kawai et al.<br>1991)           |
| Ambient air containing (8 h TWA<br>GM/GSD): 0.8/3.9 ppm o-                                                                                                       | Mandelic acid, phenylglyoxylic acid                                                                                                         |                                                                                                                                                                            |                                  |
| xylene, 2.1/3.37 ppm m-xylene,<br>0.9/3.66 ppm p-xylene,<br>0.8/2.26 ppm toluene, 0.9/3.22<br>ppm EB                                                             | Urinary MHA levels increased with<br>some proportionality to ambient air<br>concentration of the respective xylene<br>isomer                |                                                                                                                                                                            |                                  |
|                                                                                                                                                                  | At the same ambient air concentration,<br>p-xylene produced higher urinary<br>levels of the corresponding MHA than<br>the m- and o-isomers. |                                                                                                                                                                            |                                  |
| Biomonitoring of 175 workers,<br>cf. (Uchida et al., 1993)                                                                                                       | Increase of MHA formation with TWA ambient air concentration confirmed (cf. (Kawai et al., 1991)).                                          | None                                                                                                                                                                       | (Inoue et al.<br>1993)           |
| Ambient air containing (8 h TWA<br>GM/GSD): 1.2/30.4 ppm o-<br>xylene, 7.3/99.3 ppm m-xylene,<br>3.8/45.4 ppm p-xylene, 0.8 ppm<br>toluene, 2.7 ppm ethylbenzene | Smoking and drinking found to reduce<br>urinary MHA levels                                                                                  |                                                                                                                                                                            |                                  |
| Biomonitoring of 12 workers                                                                                                                                      | Time of conversion to MHA: p (up to 6<br>h) < m (up to 18 h) < o (after 18 h);<br>m-MHA present in over-proportionate<br>amount             | Conclusion of<br>authors (m-<br>xylene conversion<br>is preferred over<br>others) is not<br>supported. Could<br>be explained by<br>faster<br>metabolisation of<br>p-xylene | (Miller and<br>Edwards,<br>1999) |
| PBTK modelling combined with<br>human data (acute inhalation of<br>deuterated xylenes, 2 h)                                                                      | Clearance:<br>o: 116 $\pm$ 34 L/h<br>m: 129 $\pm$ 33 L/h<br>p: 117 $\pm$ 23 L/h                                                             | No real difference<br>between isomers,<br>m-xylene has<br>slightly higher                                                                                                  | (Adams et<br>al., 2005)          |
| o-, m-, p-Xylene: 98%                                                                                                                                            | T <sub>1/2</sub><br>$T_{33.0 \pm 11.7 h}$<br>$p: 30.3 \pm 10.2 h$                                                                           | clearance, high<br>interindividual<br>variability                                                                                                                          |                                  |
| Toxicokinetics in 6 male<br>volunteers following inhalation<br>exposure, for 4 h                                                                                 | Excretion modelled to follow biphasic pattern                                                                                               | Composition of<br>test material<br>unclear                                                                                                                                 | (Janasik et<br>al., 2008)        |
| Xylene, composition and purity<br>not reported,                                                                                                                  | Wide variability in blood and urine levels of xylene, methylhippuric acid, and ethylbenzene.                                                | Reporting of<br>results for EB<br>ambiguous (two<br>dose levels were                                                                                                       |                                  |

| SUMMARY OF STUDIES ON TOXICOKINETICS, HUMAN DATA                              |                                                |                                  |        |  |  |
|-------------------------------------------------------------------------------|------------------------------------------------|----------------------------------|--------|--|--|
| Method/Study Type                                                             | Results                                        | Remarks                          | Source |  |  |
| 200 mg/m <sup>3</sup> , mean absolute dose received: 355.6 (296.2 – 459.2) mg | Not usable for quantitative risk<br>assessment | tested, only one result reported |        |  |  |
| Ethylbenzene, purity not reported, 20 – 200 mg/m <sup>3</sup>                 |                                                |                                  |        |  |  |

In 2007, the US Agency for Toxic Substances and Disease Registry (ATSDR) concluded that "xylenes, because of their lipophilic properties, are rapidly absorbed by all routes of exposure, rapidly distributed throughout the body, and, if not metabolized, quickly eliminated in exhaled air. In humans, absorption has been estimated as > 50% through the lungs following inhalation exposure and < 50% through the gastrointestinal system. In humans exposed by inhalation, up to 2% of the absorbed dose may be absorbed through the skin. The major pathway for metabolism involves mixed function oxidases in the liver, resulting mainly in the formation of isomers of methylhippuric acid that are eliminated in the urine [...]. Xylenes tend not to accumulate in the body, but they may be sequestered briefly in fat tissues due to their lipophilicity; elimination of xylene is slower in individuals with a greater percentage of body fat." (ATSDR, 2007)

Below, some aspects with relevance to specific issues in this evaluation are further discussed.

#### 7.9.1.3. Summary of toxicokinetics

#### 7.9.1.3.1. Absorption

#### 7.9.1.3.1.1. Oral

No reliable data are available that would allow quantification of oral absorption. The US ATSDR estimates < 50%, but the basis for this estimate is unclear (ATSDR, 2007). As a worst-case assumption in line with the REACH guidance, 50% absorption will be used when converting an external oral dose to a systemically available one, while in theory 100% would have to be used when converting a systemically available to an external oral dose (not relevant in the context of this dossier).

#### 7.9.1.3.1.2. Inhalation

No reliable non-human data are available from which the percentage of xylene absorbed via inhalation could be estimated.

Available studies in humans lack complete mass balances. Estimates of the percentage of dose absorbed via inhalation therefore range from 60-100%. As a worst-case assumption, 60% absorption will be used when converting an external air concentration to a systemically dose following inhalation, while 95% will be used when converting a systemic dose to an external air concentration.

#### 7.9.1.3.1.3. Dermal

Dermal absorption studies in humans are available only for m-xylene. (Engström et al., 1977) estimated a flux of 120  $\mu$ g/cm<sup>2</sup>/h, the basis for this estimate is, however, unclear and a complete mass balance is missing. (Kezic et al., 2001) estimated a flux of 300  $\mu$ g/cm<sup>2</sup>/h based on additional modelling assumptions which are not fully clear and therefore negatively impact on the reliability of this result. All of these studies likely underestimate dermal absorption.

The lead registrant by means of applying the QSAR model proposed by (ten Berge, 2009) calculated a worst-case estimate of 15% dermal absorption for all xylenes, but no

documentation was provided to clarify how this result was achieved (the said model does not predict an absorbed percentage directly).

(Ahaghotu et al., 2005) carried out an *in vitro* dermal absorption study in hairless rats exposed to an excess ("infinite") dose of (mixed?) xylene(s). A volume of 0.5 mL of 98% pure radiolabelled xylene was applied to an exposure area of 0.636 cm<sup>2</sup> for 8 h.

None of these studies fully represent the dermal absorption to be expected during real-life dermal exposure of workers or consumers. Therefore, a reasonable worst case scenario needs to be developed.

Given that with the exception of acute lethality studies no dermal toxicity studies are available for the xylene isomers, the eMSCA considered that a dermal absorption rate would be needed only for the purpose of judging the risk of dermal exposure based on systematic concentrations derived from oral or inhalation studies, but not vice versa.

In this sense, a reasonable worst-case estimate of dermal absorption should represent the highest amount reasonably assumed to be absorbed. The eMSCA found that the study by (Ahaghotu et al., 2005) was the most reliable to be used for this purpose and, being based on data, more suitable than the 100% default assumption suggested by the REACH quidance.

The content of xylene in all relevant compartments was reported as mean and standard deviation (SD) for the time-points of 0.25, 0.5, 1, 2, 3, 4, and 8 h. Due to rather low substance concentrations in the respective compartments, there was quite some variability. As a worst-case scenario was sought for, the eMSCA decided to

- use all compartments except the donor cell for the estimation (i.e. also the stratum *corneum* fraction was included),
- for any given time-point sum up the individual compartment contents expressed as mean plus three standard deviations to cover a high percentile of the probability distribution (for a normal distribution this would correspond to the 99.7<sup>th</sup> percentile), and
- in the end use the value for the time-point showing the highest sum for further risk assessment.

**DISTRIBUTION OF XYLENE IN THE DIFFERENT COMPARTMENTS OF THE SKIN AND IN** 

The respective values are given in Table 17.

| Tab | ble | 17 |  |
|-----|-----|----|--|
|     |     |    |  |

| THE RECEPTOR CELL AS OBSERVED IN (AHAGHOTU ET AL., 2005)* |                      |                        |                  |               |                     |            |
|-----------------------------------------------------------|----------------------|------------------------|------------------|---------------|---------------------|------------|
| Time<br>(h)                                               | Receptor cell<br>(%) | Stratum corneum<br>(%) | Epidermis<br>(%) | Dermis<br>(%) | Lateral skin<br>(%) | Sum<br>(%) |
| 0.25                                                      | 0.012                | 0.009                  | 0.01             | 0.008         | 1.599               | 1.638      |
| 0.5                                                       | 0.023                | 0.030                  | 0.006            | 0.022         | 3.099               | 3.180      |
| 1                                                         | 0.021                | 0.049                  | 0.009            | 0.045         | 0.951               | 1.075      |
| 2                                                         | 0.079                | 0.069                  | 0.014            | 0.11          | 0.930               | 1.202      |
| 3                                                         | 0.137                | 0.114                  | 0.017            | 0.107         | 0.012               | 0.387      |
| 4                                                         | 0.193                | 0.107                  | 0.013            | 0.182         | 0.080               | 0.575      |
| 6                                                         | 0.231                | 0.093                  | 0.018            | 0.120         | 0.047               | 0.509      |
| 8                                                         | 0.342                | 0.103                  | 0.016            | 0.083         | 0.052               | 0.596      |

\* Based on the results for 6 replicates for each time point, all percentage values are mean + 3 SD, i.e. they represent the 99.7<sup>th</sup> percentile if normal distribution is assumed

As can be seen, the highest value of 3.180% was obtained at t = 0.5 h. Given the applied volume (0.5 mL), a density of 0.871 g/mL, and a purity of 98%, this amounts to a total absorbed mass of:

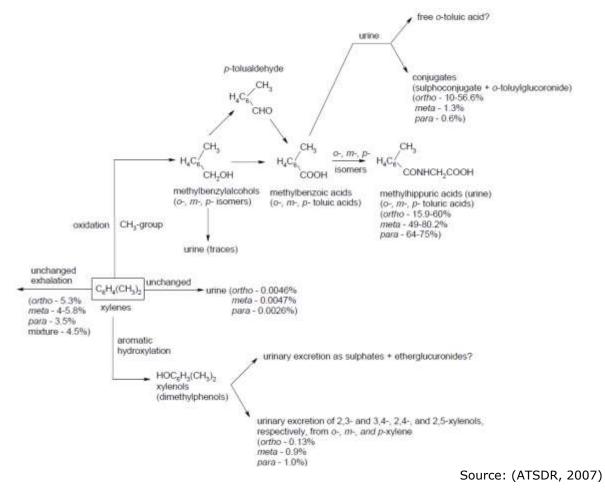
Substance Evaluation Conclusion document EC No 203-396-5, 202-422-2, 203-576-3

0.0318 x 0.5 mL x 0.871 g/mL x 0.98 = 13.57 mg

after 0.5 h. Based on an exposure area of 0.636  $\rm cm^2,$  a worst-case assumption of the dermal flux therefore amounts to:

 $13.57 \text{ mg}/0.636 \text{ cm}^2/0.5 \text{ h} = 43 \text{ mg/cm}^2/\text{h}$ 

Further arguments that this value constitutes a worst-case scenario include inter alia:


- with a total of 8 h, the exposure time was long enough to account for any impact of xylenes on the barrier function of the skin,
- the occlusive design of the study excluded volatilisation which can be expected for the real-life situation, and
- most of the real-life scenarios will not be "infinite dose" cases, i.e. the concentration gradient driving dermal absorption can be expected to be less steep.

#### 7.9.1.3.2. Distribution

Xylenes are widely distributed and intermediately stored to some degree in fat tissue (e.g. perirenal fat).

#### 7.9.1.3.3. Metabolism

Phase I reactions include oxidation to hydroxy-, carbonyl-, and ultimately oxocarbonyl derivatives, followed by phase II conjugations, most prominently with glycine to form the corresponding methylhippuric acids. A schematic overview is given in the figure below.



In mixtures, isomers and ethylbenzene appear to compete for the same CYP enzymes and conjugation partners. The involvement of ADH suggests a possible mixture effects with ethanol and other solvents.

# 7.9.1.3.4. Excretion

The major fraction of absorbed xylene isomers is excreted in the form of the corresponding methylhippuric acids (ethylbenzene: mandelic acid) while a smaller fraction is exhaled unchanged. Some studies show the presence of corresponding dimethylphenols. (NTP, 1986) postulates route-specific differences, but the data base seems to be too weak to support this.

#### 7.9.1.3.5. Differences between xylene isomers, ethylbenzene

Conjugation and excretion are fastest for p-xylene and ethylbenzene, followed by m-xylene and o-xylene. Competitive metabolism might lead to difficulties in reliably predicting blood levels from single isomers vs. mixed isomers. Potential sex-specific differences are not covered by the human database. Similar results as for the three xylene isomers have been reported for ethylbenzene (German MSCA, 2008).

# 7.9.2. Acute toxicity

| SUMMARY OF STUDIES ON ACUTE TOXICITY, NON-HUMAN DATA                                                                                                                                                                                    |                                                                                                                                                                                                                                               |                                                                        |                                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|--------------------------------|
| Method/Study Type/Test<br>substances                                                                                                                                                                                                    | Results                                                                                                                                                                                                                                       | Remarks                                                                | Source                         |
|                                                                                                                                                                                                                                         | Oral                                                                                                                                                                                                                                          |                                                                        |                                |
| Acute oral toxicity, Wistar rats<br>Application per gavage, undiluted, in<br>corn or olive oil. Post-exposure<br>period: 14 d<br>Xylene (Purity: 19% o, 52% m, 24%<br>p, ethylbenzene: not specified)<br>Ethylbenzene:<br>Purity: ≥ 98% | LD <sub>50</sub> (xylene, male rats):<br>4300 mg/kg bw<br>LD <sub>50</sub> (ethylbenzene, male and<br>female rats):<br>3500 mg/kg bw                                                                                                          | Sparse docu-<br>mentation, no<br>group dose<br>levels/results<br>given | (Wolf et al.,<br>1956)         |
| Acute oral toxicity, Wistar rats<br>Application per gavage undiluted or in<br>corn oil. Post-exposure period: 14 d<br>m-Xylene, ethylbenzene (purity: not<br>reported)                                                                  | LD <sub>50</sub> (m-xylene, male rats):<br>6677 (5404-8253) mg/kg bw<br>LD <sub>50</sub> (ethylbenzene, rats):<br>4734 (4413-5081) mg/kg bw                                                                                                   | Sparse docu-<br>mentation, no<br>group dose<br>levels/results<br>given | (Smyth et al.,<br>1962)        |
| Acute oral toxicity, Long-Evans rats<br>Post-exposure period: 14 d<br>Mixed xylenes (purity: not reported)                                                                                                                              | LD <sub>50</sub> : 7.5-13.3 mL/kg<br>(6450-11438 mg/kg bw)                                                                                                                                                                                    | Sparse docu-<br>mentation, no<br>group dose<br>levels/results<br>given | (Hine and<br>Zuidema,<br>1970) |
| Acute oral toxicity, single dose, oral<br>gavage, rats, mice<br>Xylene: 9% o-, 60% m-, 14% p-<br>xylene, 17% ethylbenzene                                                                                                               | Rats: Mortality at ≥ 4000 mg/kg<br>bw<br>LD <sub>50</sub> = 3523 (2707-4587)<br>mg/kg bw<br>Mice: Mortality at 6000 mg/kg<br>bw<br>LD <sub>50</sub> = 5627 (4675-6646)<br>mg/kg bw (M)<br>LD <sub>50</sub> = 5251 (4583-6014) mg/kg<br>bw (F) | None                                                                   | (NTP, 1986)                    |

| SUMMARY OF STUDIES ON ACUTE TOXICITY, NON-HUMAN DATA                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                      |                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
| Method/Study Type/Test<br>substances                                                                                                                                                                                                                                                                                                | Results                                                                                                                                                                                                                                                                                                                                                               | Remarks                                                                                                                                                                                              | Source                         |
| Acute oral neurotoxicity, Long-Evans<br>rats, single gavage dose of 0-125-<br>250-500-1000 mg/kg bw                                                                                                                                                                                                                                 | Significant amplitude depression<br>of flash-evoked potentials (FEP)<br>at $\geq$ 250 mg/kg bw                                                                                                                                                                                                                                                                        | None                                                                                                                                                                                                 | (Dyer et al.,<br>1988)         |
| p-Xylene, purity not reported                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                      |                                |
|                                                                                                                                                                                                                                                                                                                                     | Dermal                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                      |                                |
| Acute dermal toxicity, NZW rabbits<br>m-Xylene, ethylbenzene (purity: not<br>reported)                                                                                                                                                                                                                                              | LD <sub>50</sub> (m-xylene, rabbits):<br>12211 mg/kg bw<br>LD <sub>50</sub> (ethylbenzene, rabbits):<br>15433 mg/kg bw                                                                                                                                                                                                                                                | Sparse docu-<br>mentation, no<br>group dose<br>levels/results<br>given. Inhaled<br>concentrations<br>are nominal, not<br>analytically<br>verified, i.e. LC <sub>50</sub><br>might have been<br>lower | (Smyth et al.,<br>1962)        |
| Acute dermal toxicity, NZW rabbits<br>Xylene (purity: not reported)                                                                                                                                                                                                                                                                 | LD₅₀: ~5.0 mL/kg<br>(~4300 mg/kg bw)                                                                                                                                                                                                                                                                                                                                  | Sparse docu-<br>mentation, no<br>group dose<br>levels/results<br>given                                                                                                                               | (Hine and<br>Zuidema,<br>1970) |
|                                                                                                                                                                                                                                                                                                                                     | Inhalation                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                    |                                |
| Inhalation: 4 h whole-body exposure<br>Xylene (purity: not reported)                                                                                                                                                                                                                                                                | LC <sub>50</sub> : 4670-8640 ppm                                                                                                                                                                                                                                                                                                                                      | Sparse<br>documentation,<br>no group dose<br>levels or<br>individual group<br>results are given                                                                                                      | (Hine and<br>Zuidema,<br>1970) |
| 4 h Acute inhalation study in rats and<br>cats<br>4 h Range-finding inhalation<br>experiments in rats (actual dose ca.<br>0-2-4-8-16-32 mg/L) and dogs<br>(actual dose ca. ca. 0-2-4-8 mg/L)<br>Determination of odour threshold and<br>sensory responses<br>Xylene:<br>7.63% o-, 65.01% m-, 7.84 p-<br>xylene, 19.27% ethylbenzene | 4 h LC <sub>50</sub> , male rats: 6700<br>(5100-8500) ppm<br>All 4 cats died within 2 hr →<br>LC <sub>50</sub> (cat) << 9500 ppm<br>Range-finders:<br>≥ ~4 mg/L or ~909 ppm caused<br>slight incoordination in rats and<br>lacrimation in dogs<br>Odour threshold: ~1 ppm                                                                                             | Density of mixed<br>xylenes used in<br>this study:<br>0.87 g/mL                                                                                                                                      | (Carpenter et<br>al., 1975)    |
| Acute inhalation study in mice<br>1 x 6 h, 14 d observation period<br>o-Xylene: purity 98%<br>m-Xylene: purity 97%<br>p-Xylene: purity 98%                                                                                                                                                                                          | "Not objectionable" dose:<br>110 ppm<br>o-Xylene: LC50 = 4595 ppm<br>(4468-4744)<br>m-Xylene: LC50 = 5267 ppm<br>(5025-5490)<br>p-Xylene: LC50 = 3907 ppm<br>(3747-4015)<br>1.5-fold values when<br>extrapolated to 4 h exposure:<br>o-Xylene: LC50 = 6893 ppm<br>(6702-7116)<br>m-Xylene: LC50 = 7901 ppm<br>(7538-8235)<br>p-Xylene: LC50 = 8235 ppm<br>(5621-6023) | None                                                                                                                                                                                                 | (Bonnet et al.,<br>1979)       |

| SUMMARY OF STUDIES ON ACUTE TOXICITY, NON-HUMAN DATA                                                                                    |                                                                                                                                                                                                                      |         |                            |
|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------------------------|
| Method/Study Type/Test<br>substances                                                                                                    | Results                                                                                                                                                                                                              | Remarks | Source                     |
| Acute inhalation study rats<br>1 x 6 h, 14 d observation period<br>o-Xylene: purity 98%<br>m-Xylene: purity 97%<br>p-Xylene: purity 98% | o-Xylene: $LC_{50} = 4330 \text{ ppm}$<br>(4247-4432)<br>m-Xylene: $LC_{50} = 5984 \text{ ppm}$<br>(5796-6181)<br>p-Xylene: $LC_{50} = 4591 \text{ ppm}$<br>(4353-5049)                                              | None    | (Bonnet et al.,<br>1982)   |
|                                                                                                                                         | 1.5-fold values when extrapolated to 4 h exposure:                                                                                                                                                                   |         |                            |
|                                                                                                                                         | o-Xylene: $LC_{50} = 6495 \text{ ppm}$<br>(6371-6648)<br>m-Xylene: $LC_{50} = 8976 \text{ ppm}$<br>(8694-9272)<br>p-Xylene: $LC_{50} = 6887 \text{ ppm}$<br>(6530-7574)                                              |         |                            |
| Acute inhalation, 4 h, rat, 14 d post-<br>exposure observation period                                                                   | LC <sub>50</sub> : 6247 ppm (combined)<br>5922 ppm (F)/6580 ppm (M)                                                                                                                                                  | None    | 1986)                      |
| p-Xylene, purity not reported                                                                                                           |                                                                                                                                                                                                                      |         |                            |
| Acute inhalation, female SD rats, 4 h<br>exposure, 24 h post-exposure<br>observation period                                             | Not taken for risk assessment<br>due to insufficient post-<br>exposure observation                                                                                                                                   | None    | (Lundberg et<br>al., 1986) |
| Xylene, purity 99%, composition: o-,<br>m-, and p-xylene, relative content<br>not specified                                             |                                                                                                                                                                                                                      |         |                            |
| Acute inhalation (4 h) neurotoxicity,<br>Long-Evans rats                                                                                | Significant amplitude depression of Flash-Evoked Potentials (FEP) at $\geq$ 1600 ppm                                                                                                                                 | None    | (Dyer et al.,<br>1988)     |
| p-Xylene, purity not reported                                                                                                           |                                                                                                                                                                                                                      |         |                            |
| Acute inhalation (OECD 403), rat, 4 h, $\sim$ 40,000 mg/m <sup>3</sup> or 9094 ppm                                                      | Time until first lethality $(LT_0) = 0.5 h$                                                                                                                                                                          | None    | (Klimisch et<br>al., 1988) |
| p-Xylene, purity 98%                                                                                                                    |                                                                                                                                                                                                                      |         |                            |
| Acute inhalation neurotoxicity test,<br>male Wistar rats (ca. 3000 ppm<br>analytical), mice, (ca. 2600 ppm                              | Clear effect on rotarod performance in rats                                                                                                                                                                          | None    | (Korsak et al.,<br>1990)   |
| analytical), 6 h                                                                                                                        | Strong depression of respiratory rate in mice                                                                                                                                                                        |         |                            |
| o-, m-, p-Xylene (95%)                                                                                                                  |                                                                                                                                                                                                                      |         |                            |
| Acute inhalation hepatotoxicity study<br>in male F344 rats at 0 or 1600 ppm,<br>6 h/d for 1 or 3 d                                      | No histopathological evidence of hepatic damage                                                                                                                                                                      | None    | (Simmons et<br>al., 1991)  |
| p-Xylene (purity ≥ 99.0%)                                                                                                               | Little or no effect on the serum<br>levels of aspartate<br>aminotransferase, alanine<br>aminotransferase, lactate<br>dehydrogenase, ornithine<br>carbamyl transferase, alkaline<br>phosphatase, and total bilirubin. |         |                            |
|                                                                                                                                         | Increase in relative liver weight<br>on d 1 post-exposure (both 1<br>and 3 d exposure)                                                                                                                               |         |                            |
|                                                                                                                                         | P450 increased by both p-<br>xylene exposure regimens on d<br>1 post-exposure; returned to<br>control levels by d 3 following<br>single and by d 2 following 3-d<br>exposure                                         |         |                            |

# SUMMARY OF STUDIES ON ACUTE TOXICITY, NON-HUMAN DATA

| SUMMARY OF STUDIES ON ACUTE TOXICITY, NON-HUMAN DATA                                                                                                |                                                                                                                                                                                                                                                                                                                             |         |                          |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------------------------|--|
| Method/Study Type/Test<br>substances                                                                                                                | Results                                                                                                                                                                                                                                                                                                                     | Remarks | Source                   |  |
| Acute inhalation toxicity in, male<br>Wistar rats (4 h/d) and , Balb/C mice<br>(6 h/d, sex not reported), for 1 d<br>m-Xylene (purity not reported) | Concentration-dependent<br>disturbance of rotarod<br>performance in rats, EC50 =<br>1982 (15430-2565) ppm<br>Concentration-dependent<br>increase in motor activity in<br>rats, LOAEC = 500 ppm<br>Concentration-dependent<br>decrease in respiratory rate in<br>mice, EC <sub>50</sub> = 1360 ppm/5984<br>mg/m <sup>3</sup> | None    | (Korsak et al.,<br>1993) |  |
| Acute inhalation nephrotoxicity study<br>in rats, 4 h, 3000 ppm<br>o-Xylene, assumed 99% pure                                                       | Increase in urinary $\gamma$ -glutamyl transferase, alkaline phospatase, N-Acetyl-beta-D-glucosaminidase, glucose and in urinary output                                                                                                                                                                                     | None    | (Morel et al.,<br>1998)  |  |

| SUMMARY OF STUDIES ON ACUTE TOXICITY, HUMAN DATA                                                                                                                          |                                                                                                                              |                                                         |                              |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|------------------------------|
| Method/Study Type/Test<br>substances                                                                                                                                      | Results                                                                                                                      | Remarks                                                 | Source                       |
|                                                                                                                                                                           | Inhalation                                                                                                                   |                                                         |                              |
| Tests of numerical ability, reaction<br>time (simple and choice), short-<br>term<br>memory, and critical flicker fusion                                                   |                                                                                                                              | None                                                    | (Gamberale et<br>al., 1978)  |
| Series 1:                                                                                                                                                                 |                                                                                                                              |                                                         |                              |
| 15 males, 0-435-1300 mg/m <sup>3</sup>                                                                                                                                    | Series 1:                                                                                                                    |                                                         |                              |
| (~0-100-300 ppm), for 70 min                                                                                                                                              | No effect on behaviour. total uptake of xylene estimated to be on average                                                    |                                                         |                              |
| Series 2:                                                                                                                                                                 | 180/540 mg, respectively<br>Series 2:                                                                                        |                                                         |                              |
| 8 males, 0-1300 mg/m <sup>3</sup><br>(~300 ppm) including 30 min<br>work at 100 W , 1 x for 70 min                                                                        | Evidence of performance decrement in<br>three of the performance tests.<br>Physical work induced an increase in              |                                                         |                              |
| Xylene (p-xylene 12.8%, o-xylene                                                                                                                                          | the total uptake up to an average of 1,200 mg                                                                                |                                                         |                              |
| 12.1%, m-xylene 54.4%), and ethylbenzene 20.7%.                                                                                                                           | NOAEC (70 min) = 100 ppm                                                                                                     |                                                         |                              |
| Acute inhalation, human, 4 h (3 h in the morning, 40 min break, 1 hour in the afternoon) exposure to TWA of 8.2 $\mu$ mol/L (869 mg/m <sup>3</sup> or ~200 ppm)           | Impairment of body balance and<br>audiomotor coordination after peak<br>exposures                                            | None                                                    | (Savolainen et<br>al., 1984) |
| <ol> <li>1.: Constant concentration</li> <li>2.: Fluctuating concentration with<br/>peaks (up to ~400 ppm)</li> </ol>                                                     |                                                                                                                              |                                                         |                              |
| m-Xylene, purity 95%                                                                                                                                                      |                                                                                                                              |                                                         |                              |
| Acute inhalation CNS toxicity<br>study in 16 male volunteers, 2.84<br>mmol/m <sup>3</sup> (~300 mg/m <sup>3</sup> or 68<br>ppm), for 4 h<br>p-Xylene, purity not reported | Simple reaction time, short term<br>memory, and choice reaction time at 0,<br>1 and 4 h into exposure were all<br>unaffected | Key study<br>for acute<br>DNEL<br>derivation<br>(NOAEC) | (Olson et al.,<br>1985)      |
|                                                                                                                                                                           | 25                                                                                                                           |                                                         | August 2021                  |

| SUMMARY OF STUDIES ON ACUTE TOXICITY, HUMAN DATA                                                                                                                                                                                                                          |                                                                                                                                                                                                                  |                                                         |                               |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|-------------------------------|
| Method/Study Type/Test<br>substances                                                                                                                                                                                                                                      | Results                                                                                                                                                                                                          | Remarks                                                 | Source                        |
| Acute inhalation neurotoxicity<br>study in 9 male volunteers, 3 h<br>exposure – 40 min break – 40 min<br>exposure<br>1.: Constant conc.200 ppm<br>2.: Fluctuating conc. with peaks<br>(135-400 ppm) for first 20 min,<br>then constant at 200 ppm<br>m-Xylene, purity 95% | Decrease in Visually Evoked Potentials<br>(Flash VEPs) upon physical activity, no<br>effects on Brain-stem Auditory Evoked<br>Potentials (BAEP)                                                                  | None                                                    | (Seppalainen et<br>al., 1989) |
| Acute inhalation neurotoxicity<br>study in 10 male volunteers, 100<br>ppm, 4 h<br>Xylene, composition/purity not<br>reported                                                                                                                                              | Effects on Simple Reaction Time (SRT)<br>and Choice Reaction Time (ChRT)                                                                                                                                         | Key study<br>for acute<br>DNEL<br>derivation<br>(LOAEC) | (Dudek et al.,<br>1990)       |
| Two inhalation neurotoxicity<br>studies in male volunteers, TWA<br>concentration of 200 ppm, either<br>at a constant rate or fluctuating<br>with peaks (up to ~400 ppm),<br>sedentary or under physical<br>activity (100 W)<br>m-Xylene, 95%                              | 400 ppm peaks decreased body sway<br>and prolonged simple visual reaction<br>times in sedentary subjects , and<br>auditory choice reaction times when<br>combined with physical exercise<br>(200 ppm: no effect) | None                                                    | (Laine et al.,<br>1993)       |

### 7.9.2.1. Summary of acute toxicity

Experimental data are available for all isomers for the inhalation route, for m-xylene, ethylbenzene and mixed xylenes also for the oral and dermal routes of administration.

While the available data base supports the CLH as Acute Tox. 4 for the inhalation route as well as no classification for acute oral toxicity, the rationale behind the existing CLH for xylenes (isomers and mixed) as Acute Tox. 4 for the dermal route is not clear.

Non-lethal toxicity of xylene isomers or mixed xylene can be observed in the form of acute neurobehavioural effects. In rats, (Dyer et al., 1988) observed a significant amplitude depression of flash-evoked potentials (FEP) after single oral gavage administration of  $\geq 250 \text{ mg/kg}$  bw or single inhalation exposure for 4 h to  $\geq 1600 \text{ ppm p-xylene}$ . (Korsak et al., 1990) noted a decrease in rotarod performance in rats and a strong depression of the respiratory rate after inhalation of ca. 3000 ppm (rats) and 2600 ppm (mice) with all xylene isomers.

In addition, a number of experiments (Dudek et al., 1990; Gamberale et al., 1978; Laine et al., 1993; Olson et al., 1985; Savolainen et al., 1984; Seppalainen et al., 1989) have studied xylene-related neurobehavioural effects related to learning performance, reaction time or motor coordination in humans after single acute exposure. (Dudek et al., 1990) observed effects of mixed xylene on simple and choice reaction time after a 4-h exposure at 100 ppm, while (Olson et al., 1985) reported 68 ppm as a NOAEC for p-xylene with respect to these effects.

Both the data in animals and humans suggest the need for classification/labelling for STOT SE 3, H336 ("May cause drowsiness or dizziness").

The value of 68 ppm is taken forward to risk assessment as the most relevant Point of Departure (PoD) for acute effects after single inhalation exposure in humans (cf. section 7.9.11.1).

36

# 7.9.2.2. Irritation/corrosion

| SUMMARY OF STUDIES ON IRRITATION/CORROSION IN NON-HUMANS                                                                                                                                                     |                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                             |                                        |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--|
| Method/Study Type/Test<br>substances                                                                                                                                                                         | Results                                                                                                                                                                                                                                                                                    | Remarks                                                                                                                                                                                     | Source                                 |  |
|                                                                                                                                                                                                              | Skin                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                             |                                        |  |
| <pre>Skin irritation in rabbits Skin: Repeated exposure of ear and belly for 10-20 exposures over 2-4 wk Xylene (purity: 19% o, 52% m, 24% p, ethylbenzene: not specified) Ethylbenzene: Purity: ≥ 98%</pre> | Xylene: Moderate to strong<br>irritation, "moderate necrosis"<br>(development of oedema and<br>superficial necrosis,; this<br>resulted in a "chapped"<br>appearance and exfoliation of<br>large patches of skin)<br>Ethylbenzene: Moderate to<br>strong irritation, "moderate<br>necrosis" | Evidence of skin<br>irritation, but not<br>clear regarding<br>corrosion<br>Unclear for eye<br>irritation/corrosion                                                                          | (Wolf et al.,<br>1956)                 |  |
| Skin irritation in rabbits<br>m-Xylene, ethylbenzene,<br>purity/composition not reported                                                                                                                     | Indications of skin irritation,<br>but results are not usable for<br>classification and labelling<br>due to lack of sufficient<br>information                                                                                                                                              | None                                                                                                                                                                                        | (Smyth et al.,<br>1962)                |  |
| Skin irritation in NZW rabbits<br>Xylene, purity/composition not<br>reported                                                                                                                                 | Suggests skin irritation, but<br>results cannot be directly<br>transferred to current<br>classification and labelling<br>(only mean prinmary<br>irritation index is given)<br>Interpreted by registrant as<br>irritant                                                                     | None                                                                                                                                                                                        | (Hine and<br>Zuidema, 1970)            |  |
| Skin irritation in NZW, undiluted,<br>semi-occlusive<br>p-Xylene, purity 99%                                                                                                                                 | Irritating, not corrosive                                                                                                                                                                                                                                                                  | Only registrant's<br>summary available,<br>no single animal<br>scores or detailed<br>effect description<br>Unclear whether CLP<br>classification<br>threshold for<br>irritation is exceeded | (Chevron<br>Chemical<br>Company, 1973) |  |
| Skin irritation in NZW rabbits,<br>occlusive (abraded and intact)<br>o-Xylene, purity not reported                                                                                                           | Irritating, not corrosive                                                                                                                                                                                                                                                                  | Only registrant's<br>summary available,<br>no single animal<br>scores or detailed<br>effect description<br>Unclear whether CLP<br>classification<br>threshold for<br>irritation is exceeded | (<br>1983a)                            |  |
| Determination of non-irritant<br>concentrations ("limit<br>concentrations") in rabbit skin<br>o-, m-, p-Xylene, ethylbenzene,<br>purity not reported                                                         | All tested substances were<br>below Dir 83/467/EEC<br>classification thresholds at ≤<br>50% dilution                                                                                                                                                                                       | Reliable with<br>restrictions, only limit<br>concentrations, no<br>individual scores are<br>given                                                                                           | (Jacobs et al.,<br>1987)               |  |
| Mechanistic skin irritation study in F344 rats, 1h exposure m-Xylene, purity not reported                                                                                                                    | Interleukin-1alpha (IL-1α)<br>and inducible nitric oxide<br>synthase levels were<br>increased immediately and 4                                                                                                                                                                            | None                                                                                                                                                                                        | (Gunasekar et<br>al., 2003)            |  |

| Method/Study Type/Test<br>substances                                                                                                                                                                                                           | Results                                                                                                                                                                                                                                                                                        | Remarks                                                                                                                                                  | Source                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
|                                                                                                                                                                                                                                                | hours after exposure, respectively                                                                                                                                                                                                                                                             |                                                                                                                                                          |                              |
| Skin irritation in vivo, hairless<br>rats<br>15 μL on ~3 cm <sup>2</sup> , for 4 d, every<br>2 h for 8 h/d, unocclusive<br>Xylene (purity 98%)                                                                                                 | Strong increase in Trans-<br>Epidermal Water Loss<br>(TEWL); erythema score 2.0<br>Histopathology: stratum<br>corneum swelling and<br>disruption, infiltration of<br>markers of inflammation<br>Almost 4-fold increase in<br>blood IL-1 $\alpha$ and 5-6-fold<br>increase in skin TNF $\alpha$ | Identity of test<br>material unclear                                                                                                                     | (Ahaghotu et al.,<br>2005)   |
| Skin irritation in vivo, hairless<br>rats<br>Single, occlusive, 1 h<br>Repeated, unocclusive, 15 μL on<br>~ 3 cm <sup>2</sup> , for 4 d, every 2 h for 8<br>h/d<br>m-Xylene, purity not reported                                               | Strong increase in TEWL<br>IL-1 $\alpha$ elevated 2.5- and 3.8-<br>fold (occlusive/unocclusive)<br>TNF $\alpha$ elevated about 2.4- and<br>6.0-fold<br>(occlusive/unocclusive)<br>MCP levels in skin increased<br>~1.7- and 1.8-fold<br>(occlusive/unocclusive)                                | Authors' conclusion:<br>Long-term exposure<br>to small amounts can<br>induce more skin<br>irritation and cytokine<br>response than<br>occlusive exposure | (Chatterjee et<br>al., 2005) |
| Skin irritation in pigs, single (1 d)<br>and repeated (4 d) exposure<br>o-Xylene, ethylbenzene, purity ><br>98%                                                                                                                                | No erythema, only slight<br>oedema, no significant<br>difference vs. control<br>regarding epidermal thickness<br>or number of epidermal<br>layers.                                                                                                                                             | None                                                                                                                                                     | (Muhammad et<br>al., 2005)   |
|                                                                                                                                                                                                                                                | Eye                                                                                                                                                                                                                                                                                            |                                                                                                                                                          |                              |
| Eye irritation in rabbits<br>Two drops of liquid applied to one<br>eye, no washing, observations at<br>3 min, 1 h, 1 d, 2 d, 7 d)<br>Xylene (Purity: 19% o, 52% m,<br>24% p, ethylbenzene: not<br>specified)<br>Ethylbenzene:<br>Purity: ≥ 98% | Xylene: slight conjunctival<br>irritation, very slight,<br>transient corneal injury<br>Ethylbenzene: slight<br>conjunctival irritation, no<br>corneal injury                                                                                                                                   | Unclear results for<br>eye<br>irritation/corrosion                                                                                                       | (Wolf et al.,<br>1956)       |
| Eye irritation in rabbits<br>m-Xylene, ethylbenzene,<br>purity/composition not reported                                                                                                                                                        | Indications of eye irritation,<br>but results are not usable for<br>classification and labelling<br>due to insufficient information                                                                                                                                                            | None                                                                                                                                                     | (Smyth et al.,<br>1962)      |
| Eye irritation in NZW rabbits<br>Xylene, purity/composition not<br>reported                                                                                                                                                                    | Indications of eye irritation,<br>but results are not directly<br>usable for classification and<br>labelling due to intransparent<br>scoring system.<br>Interpreted by registrant as<br>irritant                                                                                               | None                                                                                                                                                     | (Hine and<br>Zuidema, 1970)  |

# SUMMARY OF STUDIES ON IRRITATION/CORROSION IN NON-HUMANS

| SUMMARY OF STUDIES ON IRRITATION/CORROSION IN NON-HUMANS                                                                   |                                                                                                     |                                                                                                         |                               |
|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-------------------------------|
| Method/Study Type/Test<br>substances                                                                                       | Results                                                                                             | Remarks                                                                                                 | Source                        |
| Eye irritation in NZW rabbits,<br>unwashed eye                                                                             | No effects on cornea and iris,                                                                      | None                                                                                                    |                               |
| Volume/concentration not reported                                                                                          | Conjunctival redness and<br>swelling observed, but scores<br>were below classification<br>threshold |                                                                                                         | 1983d)                        |
| o-Xylene, purity not reported                                                                                              | All effects reversed by 7 d post-exposure                                                           |                                                                                                         |                               |
| Eye irritation in NZW rabbits,<br>washed eye                                                                               | No effects on cornea and iris                                                                       | Only registrant's summary available,                                                                    | (                             |
| Volume/concentration not                                                                                                   | Conjunctival redness and<br>swelling observed, but scores                                           | no single animal scores are given                                                                       | 1983e)                        |
| reported<br>o-Xylene, purity not reported                                                                                  | were below classification<br>threshold                                                              | Unclear whether CLP classification                                                                      |                               |
|                                                                                                                            | All effects reversed by 7 d post-exposure                                                           | threshold for<br>irritation is exceeded                                                                 |                               |
|                                                                                                                            | Respiratory tract                                                                                   |                                                                                                         |                               |
| Mouse sensory irritation test<br>(1 min exposure)                                                                          | Mouse: Depression of<br>respiratory rate at<br>≥ 1300 ppm                                           | None                                                                                                    | (Carpenter et<br>al., 1975)   |
| Mixed xylenes: 7.63% o-,<br>65.01% m-, 7.84 p-xyene,<br>19.27% ethylbenzene                                                | 2 1300 ppm                                                                                          |                                                                                                         |                               |
| Sensory irritation after inhalation in male Swiss OF1 mice, ca. 5 min exposure time                                        | RD₅₀ (concentration<br>corresponding with 50%<br>decrease in respiratory rate):                     | None                                                                                                    | (De Ceaurriz et<br>al., 1981) |
| o-Xylene, ethylbenzene. "high<br>purity"                                                                                   | Ethylbenzene: 1432 ppm<br>o-xylene: 1400 ppm                                                        |                                                                                                         |                               |
| Respiratory tract irritation in<br>mice, 7700 mg/m <sup>3</sup> (~1750 ppm)<br>analytical<br>o-Xylene, purity not reported | "Very slight to slight respiratory tract irritation"                                                | Only registrant's<br>summary available,<br>no single animal<br>scores or detailed<br>effect description | 1983b)                        |
|                                                                                                                            |                                                                                                     | Unclear whether CLP<br>classification<br>threshold for<br>irritation is exceeded                        |                               |
| Respiratory tract irritation in<br>mice, 8725 mg/m <sup>3</sup> (~1980 ppm)<br>analytical                                  | "Slight to severe respiratory<br>irritation"                                                        | Only registrant's<br>summary available,<br>no single animal<br>scores are given                         | (<br>1983c)                   |
| p-Xylene, purity not reported                                                                                              |                                                                                                     | Unclear whether CLP<br>classification<br>threshold for<br>irritation is exceeded                        |                               |

# SUMMARY OF STUDIES ON IRRITATION/CORROSION IN NON-HUMANS

| SUMMARY OF STUDIES ON IRRITATION/CORROSION IN HUMANS                                                                                |                                                                                                                                                                                                          |                                                            |                                |
|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|--------------------------------|
| Method/Study Type/Test<br>substances                                                                                                | Results                                                                                                                                                                                                  | Remarks                                                    | Source                         |
| Inhalation irrritation test in 150 male<br>human volunteers, 430-860-1720<br>mg/m <sup>3</sup> (ca. 100-200-400 ppm), for 30<br>min | No significant dose-related<br>effects on subjective reports of<br>irritation, respiratory rate, eye<br>blinking rate or performance of<br>behavioural tests                                             |                                                            | (Hastings,<br>1984)            |
| Xylene: 7.63% o-, 65.01% m-, 7.84 p-<br>xylene, 19.27% ethylbenzene<br>(as in Carpenter et. al. 1975)                               |                                                                                                                                                                                                          |                                                            |                                |
| Analysis of symptoms in 107 xylene-<br>exposed workers (107 M, 86 F)                                                                | Increased prevalence of<br>subjective reports of irritation<br>symptoms (CNS, eyes, skin,<br>throat), with only limited dose<br>correlation                                                              | Quality of<br>exposure<br>measurements<br>cannot be judged | (Uchida et<br>al., 1993)       |
|                                                                                                                                     | No effects on haematopoietic system                                                                                                                                                                      |                                                            |                                |
| Two case reports of ocular injury after exposure to xylene                                                                          | Strong ocular injury after eyes<br>were exposed to paint.<br>Impossible to judge whether<br>xylene was the responsible<br>agent                                                                          | Not usable for risk<br>assessment                          | (Ansari,<br>1997)              |
| Acute inhalation study in 28 male and 28 female volunteers at 50 ppm, 2 h m-Xylene, purity not reported                             | Both men and women showed<br>signs of irritation (subjective<br>self-reporting on graded scale)<br>Slight decrease in pulmonary<br>function (Forced Expiratory<br>Volume in 1 second, FEV <sub>1</sub> ; | None                                                       | (Ernstgård<br>et al.,<br>2002) |
|                                                                                                                                     | Forced Vital Capacity, FVC)<br>Women appear to be slightly<br>more sensitive to these effects                                                                                                            |                                                            |                                |
|                                                                                                                                     | No effects on acoustic<br>rhinometry, markers of<br>inflammation or blinking<br>frequency                                                                                                                |                                                            |                                |

#### 7.9.2.3. Summary of irritation/corrosion

Based on the available data, individual xylene isomers, ethylbenzene and mixed xylenes are considered unlikely to possess corrosive properties.

All xylene isomers possess CLH as Skin Irrit. 2, therefore no further action is required despite the fact that the available data mostly consist of very old studies with insufficient reporting and/or scoring systems not directly compatible with the GHS/CLP system.

With respect to eye irritation, Draize tests (with and without washing of the treated eyes) are available for o-xylene 1983d; 1983d; 1983d; 1983e). In both of these studies, no effects on cornea and iris were observed. Effects on the conjunctiva were below CLP classification thresholds and were fully reversed by 7 d post-exposure at the latest. Studies available for mixed xylenes (Hine and Zuidema, 1970; Wolf et al., 1956) and m-xylene (Smyth et al., 1962) provide some indication of at least mild eye irritation, but do not allow to conclude on whether classification thresholds were exceeded. All in all, these studies are sufficient to exclude a potential for severe eye damage (CLP Cat. 1). In the view of the eMSCA, they also do not give rise to a sufficiently strong concern justifying initiation of CLH for eye irritation (CLP Cat. 2).

For respiratory tract irritation, however, the available data in animals (depression of respiration rate in mice in

Substance Evaluation Conclusion document

1983c) indicate a possible need for classification as STOT SE/H335. Studies in humans (Ansari, 1997; Ernstgård et al., 2002; Hastings, 1984; Uchida et al., 1993) have shown that respiratory irritation (in the form of sensory irritation) can be observed in humans exposed to xylenes, too. However, most of these findings were based on subjective reporting and could not be objectivated by measurements (beyond a slight effect on pulmonary function reported in (Ernstgård et al., 2002) at 50 ppm, which was not associated with effects on rhinometry, inflammation markers or blinking rate and is therefore not considered as a suitable starting point for acute risk assessment).

#### 7.9.3. Sensitisation

#### Table 22

| SUMMARY OF STUDIES ON SKIN SENSITISATION                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                         |                                                                            |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--|
| Method/Study Type/Test<br>substances                                                                                                                                                                                                                                                                                              | Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Remarks                                                                                                                                 | Source                                                                     |  |
| Human maximisation patch test in 25<br>prisoners , 1 mL undiluted<br>Induction:<br>5 x (24 h pretreatment with SDS<br>followed by 48 h patch exposure of<br>undiluted test substance)<br>Challenge:<br>1 h pretreatment with SDS followed<br>by 48 h exposure with 25% dilution<br>Xylene, composition and purity not<br>reported | Negative, but test may not be<br>sensitive enough:<br>- Test design apparently produces<br>baseline inflammation reaction;<br>xylene not identified as irritant<br>- Challenge with 25% dilution<br>- 90% of the "test collective" were<br>black prisoners, the author notes<br>that white (Caucasian) individuals<br>with less pigmented skin might be<br>more sensitive<br>Supporting evidence that mixed<br>xylene does not possess strong skin<br>sensitisation properties<br>Interpretation as proving absence of<br>sensitising potential in humans<br>taken over by ECVAM (European<br>Commission, 2008) and ICCVAM<br>(ICCVAM, 2009) | Non-<br>compliant<br>with today's<br>EU ethical<br>standards<br>Used in<br>validation of<br>the LLNA test<br>for regulatory<br>purposes | (Kligman,<br>1966)                                                         |  |
| LLNA<br>Xylene, purity/composition not<br>reported                                                                                                                                                                                                                                                                                | Positive<br>EC <sub>3</sub> not reported in publication, but<br>apparently 95.8% acc. to RIFM<br>DB/(Urbisch et al., 2015)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | None                                                                                                                                    | (Basketter et<br>al., 1996)                                                |  |
| Expert statement                                                                                                                                                                                                                                                                                                                  | Weight-of-Evidence justification that<br>xylenes are non-sensitising                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | None                                                                                                                                    | (Basketter and<br>Kimber, 2010)                                            |  |
| In vitro tests for skin sensitisation:<br>Direct Peptide Reactivity Assay<br>(DPRA)<br>KeratinoSens <sup>®</sup><br>LuSens<br>MUSST<br>mMUSST<br>h-CLAT<br>Xylene, purity 98.5%, composition<br>not given                                                                                                                         | All tests reported negative                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | None                                                                                                                                    | (Bauch et al.,<br>2011; Bauch et<br>al., 2012;<br>Urbisch et al.,<br>2015) |  |

7.9.3.1. Summary of sensitisation

Both ECVAM and ICCVAM consider – apparently based on the HMT results reported in (Kligman, 1966) – that the positive LLNA test result for (mixed) xylene is in fact a false positive. For this reason they have used xylene as an LLNA performance standard for identifying tests performing better than the LLNA (European Commission, 2008; ICCVAM, 2009).

An expert statement is available (Basketter and Kimber, 2010) in which a Weight-of-Evidence approach is used to demonstrate the absence of a skin sensitisation potential of the xylenes using the following reasoning:

- Despite its wide-dispersive use and in contrast to irritation, no clinical reports of humans sensitised by xylenes were found by the authors.
- There are also no known structural alerts triggering concern for a sensitisation potential of xylenes.
- Human predictive test data demonstrated no sensitisation of humans in the Human Maximisation Test (HMT, (Kligman, 1966)).
- An LLNA test with 100% xylene resulted in a Stimulation Index (SI) of 3.1, barely above the cutoff for classification of 3.0. The authors have reviewed the database for xylene and concluded that xylene was a false positive.
- In addition the eMSCA has noted that a number of in vitro tests linked to the OECD Adverse Outcome Pathway (OECD, 2012) for skin sensitisation have been performed (Bauch et al., 2011; Bauch et al., 2012; Urbisch et al., 2015). These tests all being negative may be seen as a strong indicator that xylenes are unlikely to cause skin sensitisation via the aforementioned AOP. Strictly speaking, this does, however, not completely rule out the possibility that xylenes could be skin sensitisers via a different, as yet unknown, mechanism/AOP.

In summary, with remaining uncertainties acknowledged, the eMSCA considers the totality of information sufficient to conclude that xylenes most likely are no or only very weak skin sensitisers.

No data on respiratory sensitisation are available for the xylenes. Given that all known
respiratory sensitisers are also skin sensitisers (and xylenes are not considered to be)
and that no reports on respiratory hypersensitivity as a consequence of exposure to
xylenes have been found, the eMSCA concludes that there is currently no specific
concern that xylenes could be respiratory sensitisers.

#### 7.9.4. Repeated dose toxicity

| SUMMARY OF STUDIES ON REPEATED DOSE TOXICITY, NON-HUMAN DATA                                                                                       |                                                                                                                                                                         |                                               |             |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-------------|--|
| Method/Study Type/Test<br>substances                                                                                                               | Results                                                                                                                                                                 | Remarks                                       | Source      |  |
|                                                                                                                                                    | Oral                                                                                                                                                                    |                                               |             |  |
|                                                                                                                                                    | Subacute                                                                                                                                                                |                                               |             |  |
| Subacute oral gavage study in<br>rats, 14 d<br>0-125-250-500-1000-2000 mg/kg<br>bw/d<br>Xylene: 9% o-, 60% m-, 14% p-<br>xylene, 17% ethylbenzene  | Mortality from 2000 mg/kg bw/d<br>Dose-related decrease in body<br>weight of male, but not female<br>rats, > 10% only at the highest<br>dose<br>NOAEL = 1000 mg/kg bw/d | Only<br>macroscopic<br>pathology<br>performed | (NTP, 1986) |  |
| Subacute oral gavage study in<br>mice, 14 d<br>0-250-500-1000-2000-4000<br>mg/kg bw/d<br>Xylene: 9% o-, 60% m-, 14% p-<br>xylene, 17% ethylbenzene | Mortality at 4000 mg/kg bw/d<br>Prostration and shallow breathing<br>during wk 1 at 2000 mg/kg bw/d<br>NOAEL = 1000 mg/kg bw/d                                          | Only<br>macroscopic<br>pathology<br>performed | (NTP, 1986) |  |

| Method/Study Type/Test<br>substances                                                                    | Results                                                                                                                                                                               | Remarks                                       | Source                   |  |
|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|--------------------------|--|
| Subacute oral gavage study in<br>rats, 10 d, 0-250-1000-2000<br>mg/kg bw/d                              | Body weight gain decreased by 5-<br>10% at 2000 mg/kg bw/d for all<br>isomers                                                                                                         | Only<br>macroscopic<br>pathology<br>performed | (Condie et al.,<br>1988) |  |
| o-, m-, and p-Xylene, purity 99%                                                                        | Effects on absolute and relative liver weight at $\geq$ 1000 mg/kg bw/d                                                                                                               | performed                                     |                          |  |
|                                                                                                         | NOEL = 250 mg/kg bw/d<br>NOAEL = 1000 mg/kg bw/d                                                                                                                                      |                                               |                          |  |
|                                                                                                         | Further effects on thymus (o-, m-<br>xylene), spleen, and brain (p-<br>xylene) weight in different<br>treatment groups, but mostly<br>slight and without clear dose-<br>related trend |                                               |                          |  |
|                                                                                                         | Subchronic                                                                                                                                                                            |                                               |                          |  |
| Repeated dose oral toxicity study<br>in female rats, gavage, 1/d,<br>5d/wk, 6 mo                        | Increase in liver and kidney<br>weight with "slight"<br>histopathological changes at<br>≥ 408 mg/kg bw/d                                                                              | None                                          | (Wolf et al., 1956)      |  |
| Ethylbenzene:<br>Purity: ≥ 98%                                                                          | 5, 5, 7                                                                                                                                                                               |                                               |                          |  |
| Subchronic hepatotoxicity, diet, aging rats,<br>1, 2, 3 or 6 mo, 200 mg/kg feed<br>o-Xylene, purity 99% | Changes in hepatocyte<br>ultrastructure (vacuoles, surface<br>invaginations) observed with all<br>compounds and in both study<br>segments                                             | None                                          | (Bowers et al.,<br>1982) |  |
|                                                                                                         | Adversity of effects unclear                                                                                                                                                          |                                               |                          |  |
| Subchronic (13-wk) oral gavage study in rats, 13 wk, 5 d/wk                                             | Body weight decrease in both sexes                                                                                                                                                    | None                                          | (NTP, 1986)              |  |
| 0-62.5-125-250-500-1000 mg/kg<br>bw/d                                                                   | NOAEL (> 10% bw reduction) =<br>500 mg/kg bw/d                                                                                                                                        |                                               |                          |  |
| Xylene: 9% o-, 60% m-, 14% p-<br>xylene, 17% ethylbenzene                                               |                                                                                                                                                                                       |                                               |                          |  |

| SUMMARY OF STUDIES ON R                                                                                                 | EPEATED DOSE TOXICITY, NO                                                                                                                                       | DN-HUMAN DAT                                   | ГА                                |
|-------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-----------------------------------|
| Method/Study Type/Test<br>substances                                                                                    | Results                                                                                                                                                         | Remarks                                        | Source                            |
| Subchronic (13-wk) oral gavage<br>study in mice<br>0-125-250-500-1000-2000 mg/kg<br>bw/d                                | Clinical signs (weakness,<br>lethargy, short and shallow<br>breathing, unsteadiness, tremors,<br>paresis) at 2000 mg/kg bw/d<br>Body weight gain decreased by > | None                                           | (NTP, 1986)                       |
| Xylene: 9% o-, 60% m-, 14% p-<br>xylene, 17% ethylbenzene                                                               | 5% at 2000 mg/kg bw/d<br>Mortality at 2000 mg/kg bw/d                                                                                                           |                                                |                                   |
| Subchronic oral gavage study in rats, 90 d                                                                              | Decreased body weight gain in males at 1500 mg/kg bw/d                                                                                                          | None                                           | (Condie et al.,<br>1988)          |
| 0-150-750-1500 mg/kg bw/d<br>Xylene, composition: 17.6% o-,                                                             | Increase in absolute and relative liver and kidney weight at ≥ 750 mg/kg bw/d                                                                                   |                                                |                                   |
| 62.3% m-/p-xylene, 20%<br>ethylbenzene                                                                                  | Dose-related slight<br>increase/exacerbation in<br>incidence of nephropathy in<br>females                                                                       |                                                |                                   |
|                                                                                                                         | Adversity of these findings<br>unclear                                                                                                                          |                                                |                                   |
|                                                                                                                         | NO(A)EL = 150 mg/kg bw/d                                                                                                                                        |                                                |                                   |
|                                                                                                                         | Chronic                                                                                                                                                         |                                                |                                   |
| Combined chronic and<br>carcinogenicity oral gavage study<br>in rats, 103 wk, 5 d/wk                                    | Decreased survival vs. control in<br>males from both treatment<br>groups, significant at 500 mg/kg                                                              | None                                           | (NTP, 1986)                       |
| 0-250-500 mg/kg bw/d                                                                                                    | bw/d                                                                                                                                                            |                                                |                                   |
| Xylene: 9% o-, 60% m-, 14% p-<br>xylene, 17% ethylbenzene                                                               | NOAEC = 250 mg/kg bw/d                                                                                                                                          |                                                |                                   |
| Combined chronic and<br>carcinogenicity (2-yr) oral gavage<br>study in mice                                             | Clinical signs (hyperactivity) at<br>1000 mg/kg bw/d (acute effect)                                                                                             | None                                           | (NTP, 1986)                       |
| 0-500-1000 mg/kg bw/d                                                                                                   |                                                                                                                                                                 |                                                |                                   |
| Xylene: 9% o-, 60% m-, 14% p-<br>xylene, 17% ethylbenzene                                                               |                                                                                                                                                                 |                                                |                                   |
|                                                                                                                         | Inhalation                                                                                                                                                      |                                                |                                   |
|                                                                                                                         | Subacute                                                                                                                                                        |                                                |                                   |
| Repeated dose vapour inhalation<br>study in rats, guinea pigs,<br>monkeys, and dogs, 8 h/d, 5<br>d/wk, 6 wk to ~763 ppm | High dose, 6 wk: mortality on<br>days 2 and 3<br>Increase in leukocytes, potential                                                                              | Unreliable due<br>to insufficient<br>reporting | (Jenkins et al.,<br>1970)         |
| o-Xylene, purity not reported                                                                                           | Relation to treatment unclear, no control groups present                                                                                                        | Not used for risk assessment                   |                                   |
| Subacute inhalation enzyme induction study in male Wistar rats, 2 wk, 5 d/wk, 6 h/d                                     | Increase in brain NADPH-<br>diaphorase and azoreductase<br>levels and cerebral RNA<br>NOEC = 50 ppm/LOEC = 400                                                  | None                                           | (Savolainen and<br>Pfäffli, 1980) |
| 2.0-16.1-30.3 µmol/L (equivalent<br>to 50-400-750 ppm)                                                                  | ppm<br>Decrease in cerebral glutathione                                                                                                                         |                                                |                                   |
| m-Xylene, purity not reported                                                                                           | activity already at 50 ppm (LOEC)                                                                                                                               |                                                |                                   |

| Method/Study Type/Test<br>substances                                                                                                                                                                                                                                                                                                                                                                                                                                     | Results                                                                                                                                                                                                                                                                                                                                                                                         | Remarks                                                                    | Source                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Adversity of these effects cannot<br>be established                                                                                                                                                                                                                                                                                                                                             |                                                                            |                                   |
| Subacute inhalation test in rats<br>2000 ppm for 3 d, 6 h/d<br>6 rats/group<br>o-, p-Xylene: 99%,<br>m-xylene: 98.5%,<br>xylene: o: 2%/m: 64%/p: 10%<br>ethylbenzene: 23%                                                                                                                                                                                                                                                                                                | Endpoint: changed<br>neurotransmitter levels in<br>different nervous tissues<br>LOAEC 2000 ppm                                                                                                                                                                                                                                                                                                  | Limited set of<br>parameters,<br>differences<br>between isomers            | (Andersson et al.,<br>1981)       |
| Subacute (30-d) inhalation study<br>in male SD rats<br>0-200-400-800 ppm<br>Xylene, composition and purity not<br>reported                                                                                                                                                                                                                                                                                                                                               | Acetylcholine levels in striatum<br>and whole brain decreased and<br>brain glutamine levels increased<br>at 800 ppm                                                                                                                                                                                                                                                                             | Questionable<br>reliability due<br>to lack of clear<br>dose response       | (Honma et al.,<br>1983)           |
| Subacute inhalation study in mice,<br>4 d, 6 h/d<br>0-600-1000 ppm<br>p-Xylene, purity unknown                                                                                                                                                                                                                                                                                                                                                                           | No effect on serum aspartate<br>aminotransferase, alanine<br>aminotransferase, and lactate<br>dehydrogenase activities,<br>Significant increase in total P450<br>levels in the liver                                                                                                                                                                                                            | Only abstract<br>available<br>Effect levels of<br>pure p-xylene<br>unclear | (Selgrade et al.,<br>1993)        |
| Subacute inhalation neurotoxicity<br>study in rats, 6 h/d, 5 d/wk for 4<br>wk<br>0-100 ppm<br>Battery of neurobehavioural tests:<br>Radial maze test 1 wk pre- and on<br>days 14-18 post-exposure; open-<br>field activity on day 8 pre- and on<br>day 25 post-exposure; passive<br>avoidance on days 39-48 post-<br>exposure;Hot-plate test on days<br>50 and 51 post-exposure<br>Active avoidance on days 54 and<br>60 post-exposure.<br>m-Xylene, purity not reported | No impact on radial maze<br>performance<br>Significantly higher spontaneous<br>locomotor activity in the open<br>field, impaired passive avoidance<br>learning and significantly longer<br>paw-lick latencies 24 h after<br>footshock (but no significant<br>impact without shock).<br>Acquisition, but not retention, of<br>the two-way active avoidance<br>response<br>significantly impaired | None                                                                       | (Gralewicz and<br>Wiaderna, 2001) |
| Subacute inhalation ototoxicity<br>study in rats, 3 wk, 6 h/d, 5 d/wk<br>1800 ppm<br>o-, m-, p-Xylene<br>methylhippuric acids (MHAs)<br>mercapturic acids (MBAs)                                                                                                                                                                                                                                                                                                         | Among the three<br>isomers, only p-xylene was<br>cochleotoxic at the tested dose<br>level.<br>A 39-dB permanent threshold<br>shift was obtained over the tested<br>frequency range from 8 to 20<br>kHz.<br>Outer hair cells were largely<br>injured, no significant<br>morphological change within<br>spiral ganglia                                                                            | isomer-specific<br>difference in<br>effect or<br>potency                   | (Maguin et al.,<br>2006)          |

| Method/Study Type/Test<br>substances                                                                                                                                                                                                                                                                                                                                                                                                                  | Results                                                                                                                                                                                                                                                                                         | Remarks                                                                                                                  | Source                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-----------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Subchronic                                                                                                                                                                                                                                                                                      |                                                                                                                          |                             |
| Repeated dose vapour inhalation<br>study in rats, guinea pigs,<br>monkeys, and dogs, 90-127 d<br>continuous exposure to ~77 ppm)<br>o-Xylene, purity not reported                                                                                                                                                                                                                                                                                     | Increase in leukocytes, potential<br>effect on bw<br>Unclear whether relation to<br>treatment, no control groups<br>present                                                                                                                                                                     | Not reliable due<br>to lack of<br>sufficient<br>reporting<br>Not used for<br>risk assessment                             | (Jenkins et al.,<br>1970)   |
| Subchronic inhalation (6 h/d, 5<br>d/wk, 13 wk), rats, dogs, 0-180-<br>460-810 ppm)<br>Xylene: 7.63% o-, 65.01% m-,<br>7.84 p-xylene, 19.27%<br>ethylbenzene                                                                                                                                                                                                                                                                                          | Rats and dogs: Under the limited<br>scope of this study, 810 ppm or<br>~3500 mg/m <sup>3</sup> was the NOAEC in<br>both species                                                                                                                                                                 | Reliable with<br>restrictions<br>only: no GLP,<br>no details of<br>animal<br>husbandry, no<br>single animal<br>data etc. | (Carpenter et al.,<br>1975) |
| Subchronic inhalation study in<br>male rats, 6 h/d, 5 d/wk<br>1.) 0-1000 ppm for 3 mo<br>2.) 0-100 ppm for 6 mo<br>m-Xylene, 95%                                                                                                                                                                                                                                                                                                                      | Decreased rotarod performance in<br>both experiments<br>Decreased spontaneous motor<br>activity after 100 ppm x 6 mo<br>At 1000 ppm x 3 mo, also slight<br>decrease in lymphocytes and<br>increase in monocytes of unclear<br>significance<br>LOAEC = 1000 ppm (3 mo)<br>LOAEC = 100 ppm (6 mo) | No<br>histopathology<br>performed<br>No dose<br>without effect                                                           | (Korsak et al.,<br>1992)    |
| Subchronic inhalation study in<br>rats, 3 mo, 5 h/d, 6 h/wk<br>0-50-100 ppm<br>m-Xylene, purity not reported                                                                                                                                                                                                                                                                                                                                          | Significant decrease in Hb, RBC<br>and WBC (all < 10%), significant<br>decrease in rotarod performance<br>at 1, 2 and 3 months at 100 ppm,<br>significant decrease in latency of<br>the paw-lick response (plate<br>behaviour) at 50 ppm<br>NOAEC < 50 ppm<br>LOAEC = 50 ppm                    | Key study for<br>chronic DNEL<br>derivation                                                                              | (Korsak et al.,<br>1994)    |
| Subchronic inhalation study in<br>Wistar rats, 3 mo, 5 h/d, 6 h/wk<br>Tests on spontaneous neocortical<br>spike and wave discharges (SWD)<br>and spatial learning in an eight-<br>arm radial maze. SWD activity<br>was assessed on the basis of the<br>number and duration of SWD<br>bursts in one-hour EEG recordings<br>performed before the exposure,<br>on day 28, 56 and 84 of exposure,<br>and then on day 14, 28, 42, and<br>84 post-exposure. | Learning deficit in maze test two<br>months post-exposure at 1000<br>and 100 ppm<br>Development of the age-related<br>SWD activity significantly<br>retarded<br>LOAEC = 100 ppm                                                                                                                 | None                                                                                                                     | (Gralewicz et al.,<br>1995) |
| 0-100-1000 ppm                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                 |                                                                                                                          |                             |
| m-Xylene, purity unknown                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                 |                                                                                                                          |                             |
| Subchronic inhalation<br>neurotoxicity study in male SD<br>rats, 6 h/d, 6 d/wk, 13 wk                                                                                                                                                                                                                                                                                                                                                                 | p-Xylene:<br>Moderate to severe ototoxicity in<br>rats exposed at 900 and 1800<br>ppm. Body weight gain reduction<br>at $\geq$ 900 ppm                                                                                                                                                          | Isomer-specific<br>difference in<br>effect or<br>potency                                                                 | (Gagnaire et al.,<br>2001)  |

| Method/Study Type/Test<br>substances                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Source                     |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--|--|
| Morphological investigations 8 wk<br>post-exposure (vs. pre-exposure<br>values)<br>450-900-1800 ppm<br>o-, m-, p-Xylene, purity > 99%<br>Subchronic inhalation study in<br>rats, 5 h/d, 6 d/wk, for 13 wk + 8<br>wk post-exposure period<br>200-400-600-800 ppm<br>(ethylbenzene)<br>250-500-1000-2000 ppm (mixed<br>xylenes)<br>Xylene 1<br>(o-, p-xylene, ethylbenzene: 20%<br>each, m-xylene: 40%, mixed from<br>> 99% pure compounds)<br>Xylene 2:<br>(p-xylene, ethylbenzene: 10%<br>each, o-xylene: 30%, m-xylene:<br>50%, mixed from > 99% pure<br>compounds)<br>Ethylbenzene, purity > 99% | Increased auditory thresholds<br>observed at 2, 4, 8 and 16 kHz in<br>rats exposed to 1800 p-xylene.<br>Auditory threshold shifts (35 to<br>38 dB) did not reverse after eight<br>weeks of recovery.<br>Moderate and severe loss of outer<br>hair cells of the organ of Corti<br>occurred in animals exposed to<br>900 and 1800 ppm p-xylene<br>respectively.<br>No ototoxicity for other isomers<br>NOAEC (p-xylene): 450 ppm<br>NOAEC (m-,o-xylene): 1800 ppm<br>Ethylbenzene:<br>Increased auditory thresholds<br>at ≥ 400 ppm; moderate to<br>severe losses of outer hair cells of<br>the organ of Corti<br>at all tested concentrations<br>Xylene:<br>increased auditory<br>thresholds and losses of outer<br>hair cells. Concentrations of<br>ethylbenzene in mixed xylenes<br>necessary to cause a given<br>ototoxicity were 1.7–2.8<br>times less than those of pure<br>ethylbenzene.<br>Outer hair cell loss more sensitive<br>endpoint than<br>LOAECs (ototoxicity):<br>Ethylbenzene: 200 ppm<br>Xylene 1: 250 ppm<br>Xylene 2: 1000 ppm<br>Xylene 2: 500 ppm | LOAEC of 900<br>ppm<br>corresponds to<br>4 mg/L, which<br>is below the<br>classification<br>threshold for<br>STOT RE 2<br>Assuming 24<br>h/d 7 d/wk<br>exposure and<br>extrapolating to<br>chronic<br>exposure<br>results , a<br>human DNEL of<br>2 ppm or 8,5<br>mg/m <sup>3</sup> results<br>Confirmation<br>that<br>ethylbenzene<br>are drivers for<br>ototoxicity of<br>mixed xylenes<br>→ mixed<br>xylenes should<br>be classified<br>depending on<br>p-xylene and<br>ethylbenzene<br>content | (Gagnaire et al.,<br>2007) |  |  |
| Other routes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |  |  |
| Subacute hepatotoxicity, i.p.,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | No effect on hepatocyte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (Bowers et al.,            |  |  |
| young rats, 3 d, 73 mg/kg bw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ultrastructure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1982)                      |  |  |
| o-Xylene, purity 99%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |  |  |

| SUMMARY OF STUDIES ON REPEATED DOSE TOXICITY, HUMAN DATA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                         |                              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| Method/Study Type/Test<br>substances                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Remarks                                                                                                                                                                 | Source                       |
| Subacute inhalation study in 8 male<br>human volunteers<br>Eight male volunteers were exposed<br>on 5 consecutive days and 1 day<br>after the weekend to m-xylene<br>vapour at either a constant (Study I)<br>or a periodically varying (Study II)<br>concentration of 3.7-8.2 µmol/L (90-<br>200 ppm, time-weighted average)<br>The effects of exposure on<br>psychophysiological functions, such<br>as reaction time, manual<br>coordination and body balance, and<br>EEG were studied The same tests<br>were completed on two non-<br>exposure days for control purposes<br>in both studies, in which physical<br>exercise of 100 W was included. | Exposure to m-xylene already at a concentration of 3.7 µmol/L (90 ppm) had acute deleterious effects on psychophysiological functions of non-adapted subjects EEG indicated lowered vigilance during exposure to varying concentrations with peak exposures of 8.2 µmol/L Slight exercise, especially at the beginning of the exposure, seemed to antagonise the effects of xylene, particularly when the concentration fluctuated. Unclear picture with respect to tolerance.                                                                                                                                                                                                                                                                                                | Unclear<br>results,<br>limited<br>usability                                                                                                                             | (Savolainen et<br>al., 1980) |
| m-Xylene<br>175 Xylene-exposed workers (107<br>men and 68 women) were selected<br>as those (1) who underwent all<br>examinations and (2) for whom the<br>sum of the three xylene isomers<br>accounted for 70% or more of the<br>total exposure (on a ppm basis).<br>Geometric mean: 14 ppm<br>Arithmetic mean: 21 ppm<br>As controls, 241 nonexposed<br>workers (116 men and 125 women)<br>were recruited either from the same<br>factories or from factories in the<br>same regions.                                                                                                                                                                | Increased prevalence of subjective<br>symptoms in the exposed workers<br>apparently related to effects on the<br>central nervous system and to local<br>effects on the eyes, the nose, and<br>the throat, although dose-<br>dependency of the symptoms was<br>evident in only a limited number of<br>cases, possibly because the<br>intensity of exposure was rather<br>low.<br>Haematology and serum<br>biochemistry findings with respect<br>to liver and kidney functions were<br>generally negative                                                                                                                                                                                                                                                                       | Questionable<br>because of<br>subjective<br>symptoms<br>and<br>insufficient<br>delineation<br>from<br>exposure to<br>other agents<br>Not used for<br>risk<br>assessment | (Uchida et al.,<br>1993)     |
| Xylene-induced ototoxicity in<br>humans in 30 exposed and 30 non-<br>exposed laboratory workers<br>Peripheral auditory measures: pure-<br>tone audiometry and distortion<br>product otoacoustic emissions;<br>behavioral measures of central<br>auditory function; pitch pattern<br>sequence test, adaptive test of<br>temporal resolution, dichotic digit<br>test, masking level difference test;<br>auditory brainstem response was<br>used to objectively evaluate the<br>function of the auditory pathways at<br>the brainstem level. Speech<br>perception in quiet and in noise was<br>evaluated using the Hearing In Noise<br>Test (HINT).     | Significantly worse pure-tone<br>thresholds, pitch pattern sequence<br>test, dichotic digit test, HINT, and<br>auditory brainstem response<br>(absolute and interpeak latencies)<br>test results in exposed vs.<br>nonexposed participants<br>No significant differences for<br>distortion product otoacoustic<br>emissions, adaptive test of<br>temporal resolution, or the masking<br>level difference test<br>Significant correlation between the<br>concentrations of methyl hippuric<br>acid in urine and pure-tone<br>thresholds (2 to 8 kHz) was found<br>in xylene-exposed workers. Also,<br>participants with high cumulative<br>doses of xylene exposure presented<br>with poorer test results than<br>participants with low cumulative<br>dose of xylene exposure. | Proves<br>relevance for<br>humans                                                                                                                                       | (Fuente et al.,<br>2013)     |

| Method/Study Type/Test<br>substances                                                                                                                                                              | Results                                                                                                                                                                                                                                                                                                                                                                                                                 | Remarks                                               | Source                         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|--------------------------------|
| Cross-sectional study on auditory<br>function in a group of workers<br>exposed to organic solvent mixture<br>at a paint factory<br>One hundred and sixty-one workers<br>(77 exposed/84 unexposed) | <ul> <li>Hearing impairment in both ears of exposed workers compared with unexposed workers.</li> <li>Adjusted for age and chronic pathologies, waves III and V, and interpeak interval latencies were increased (p &lt; 0.05) in both ears in the exposed group.</li> <li>Despite low solvent mixture concentrations and noise levels, a concurrent ototoxicity and neurotoxicity condition may be observed</li> </ul> | Limited value<br>for risk<br>assessment of<br>xylenes | (Juárez-Pérez et<br>al., 2014) |

#### 7.9.4.1. Summary of repeated dose toxicity

Repeated dose studies are available for the oral and inhalation route. No studies with repeated dermal administration were identified in the registration dossiers or the published literature.

Studies along the oral route (Condie et al., 1988; NTP, 1986; Wolf et al., 1956) mainly demonstrated effects on organ and body weight as well as – at very high doses not relevant for classification and labelling – clinical signs of severe toxicity (prostration, shallow breathing, lethality).

However, under the scope of this SEv, the eMSCA considers the oral route less relevant and risk assessment is therefore focused on exposure via inhalation.

Neurofunctional/neurobehavioural impairment has been identified as the most sensitive endpoint for risk assessment. In animals, repeated inhalation of xylenes was found to impact on learning (Gralewicz and Wiaderna, 2001; Gralewicz et al., 1995), reaction time, motor coordination (Korsak et al., 1992; Korsak et al., 1994) and activity (Korsak et al., 1992), and increased sensitivity to pain expressed as a decreased latency of the paw-lick response in rats when placed on a hot (54.5 °C) metal plate (Korsak et al., 1994). While the relevance of these effects for humans in principle has been demonstrated in acute studies (cf. section 7.9.2), no human studies using repeated exposure are available for these endpoints (with the exception of (Savolainen and Pfäffli, 1980), which was found unsuitable for risk assessment).

The most sensitive endpoint was the reduced latency of response in the hot plate test indicating increased sensitivity to pain. At the end of a 13-wk (5 d/wk, 6 h/d) inhalation experiment with m-xylene, (Korsak et al., 1994) observed a statistically significant ( $p \le 0.05$ ) effect already at the lowest concentration tested of 50 ppm, which therefore has to be considered a LOAEC. (Gralewicz and Wiaderna, 2001) showed that 50 days after the end of a 13-wk (5 d/wk, 6 h/d) exposure at 100 ppm, no statistically significant decrease in latency vs. controls was observed, which indicates that the effect likely does not represent irreversible neurological damage and therefore does not have to be considered for STOT RE classification.

With respect to STOT RE classification, one of the initial concerns of the DE MSCA under SEv was ototoxicity. Ototoxicity was demonstrated in rats for p-xylene at  $\geq$  800 ppm (13 wk, 5 d/wk, 6 h/d; (Gagnaire et al., 2001)) or 1800 ppm (3 wk, 5 d/wk, 6 h/d; (Maguin et al., 2006), only one dose level tested), while 1800 ppm, the highest concentration tested in both experiments, was a NOAEC for the o- and m-isomers. The relevance for humans has been shown by (Fuente et al., 2013) and (Juárez-Pérez et al., 2014) who reported significantly lower hearing ability in exposed vs. non-exposed workers; these studies, however, cannot be used for quantitative risk assessment.

As a consequence of these findings, no classification/labelling for STOT RE is indicated for any of the single xylene isomers.

In 2012, Vyskocil and co-workers reviewed the available data on the ototoxic potential of a number of industrial chemicals. With respect to the xylenes, the authors concluded:

#### "Absence of noise.

One study on volunteers was identified (Seppalainen et al., 1989). ABR tests showed no ototoxic effect when 200 ppm of m-xylene was inhaled for 3 h. Seven studies were identified in rats of different strains. An ototoxic effect was observed in five of six inhalation studies (Crofton et al., 1994; Gagnaire and Langlais, 2005; Gagnaire et al., 2001; Maguin et al., 2006; Pryor et al., 1987) and one oral study (Gagnaire and Langlais, 2005) by four different tests. Three studies from the same laboratory showed the ototoxic effect depending on the duration of exposure. A LOAEL of 800 ppm was observed after 6 weeks of exposure (Pryor et al., 2001; Maguin et al., 2006). No ototoxic effect was observed after a subchronic exposure of up to 1800 ppm o- or m-xylene, but it was observed after exposure to 900 ppm p-xylene in one study and 1800 ppm in the other.

#### Presence of noise.

No study with realistic exposure concentration was identified.

#### Conclusion.

Only one human study was identified showing no ototoxic effect after short-term exposure. In rats xylene affects the auditory function. Further studies with sufficient data on the exposure of workers to xylene isomers are necessary to make a definitive conclusion. Given the current evidence from animal studies, we recommend considering p-xylene and consequently a mixture of xylene isomers as possibly ototoxic. No human or animal study on ototoxic interaction between xylenes and noise was identified" (Vyskocil et al., 2012).

The most relevant dose descriptors taken forward for DNEL derivation are listed in section 7.9.11. (

Table 29

# 7.9.5. Genotoxicity

| SUMMARY OF GENOTOXICITY STUDIES                                                                                                                                                                                                                                                                                                                                            |                                                                                    |                                                                                                                                                                                                                                                |                                          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|
| Method/Study Type/Test<br>substance                                                                                                                                                                                                                                                                                                                                        | Results                                                                            | Remarks                                                                                                                                                                                                                                        | Source                                   |
|                                                                                                                                                                                                                                                                                                                                                                            | In vitro                                                                           |                                                                                                                                                                                                                                                |                                          |
| <i>In vitro</i> sister chromatid exchange<br>assay<br>(human lymphocytes)<br>Xylene<br>Test concentration: 152 µg/mL<br>Purity: No information on relative                                                                                                                                                                                                                 | Negative ± metabolic<br>activation<br>No increase of<br>chromosomal<br>aberrations | Many deviations from<br>OECD guideline TG 479<br>(e.g. no test with<br>metabolic activation).                                                                                                                                                  | (Gerner-Smidt<br>and Friedrich,<br>1978) |
| composition.                                                                                                                                                                                                                                                                                                                                                               |                                                                                    |                                                                                                                                                                                                                                                |                                          |
| Bacterial gene mutation assay<br>Xylene<br>S. typhimurium tester strains: TA 1535,<br>TA 1537, TA 1538, TA 98, TA 100<br>Test concentrations: 0.001, 0.01, 0.1,<br>1.0 and 5.0 µg/plate (with/without<br>metabolic activation)<br>Purity: 11.4% o-xylene, 52.07% m-<br>xylene, 0.31% p-xylene, 36.8%<br>ethylbenzene                                                       | Negative ± metabolic<br>activation<br>Cytotoxicity: no<br>information              | Not in accordance with<br>OECD TG 471 (e.g.: no<br>E. coli strain was<br>tested). Lack of<br>detailed information                                                                                                                              | (<br>1978a)                              |
| Saccharomyces cerevisiae gene<br>mutation assay<br>Xylene<br>Test strain: D4<br>Test concentrations: 0.001, 0.01, 0.1,<br>1.0 and 5.0 µg/plate (± metabolic<br>activation)<br>Purity: 11.4% o-xylene, 52.07% m-<br>xylene, 0.31% p-xylene, 36.8%<br>ethylbenzene                                                                                                           | Negative ± metabolic<br>activation<br>Cytotoxicity: no<br>information              | Due to the lack of<br>detailed information it<br>is not clear, whether<br>the test is in complete<br>accordance with OECD<br>TG 480 (e.g.: no<br>information on a second<br>experiment; no<br>information on<br>replicates/concentration<br>). | ( <b>1978</b> a)                         |
| In vitro mammalian cell gene<br>mutation test<br>(MLA, L5178Y cells)Xylene<br>Test concentrations: 0.0064, 0.0125,<br>0.025, 0.05, 0.075 and 0.1 µL/mL<br>(without metabolic activation)Test concentrations: 0.025, 0.05, 0.075,<br>0.1 and 0.15 µL/mL (with metabolic<br>activation)Purity: 11.4% o-xylene, 52.07 % m-<br>xylene, 0.31 % p-xylene, 36.8 %<br>ethylbenzene | Negative ± metabolic<br>activation<br>Cytotoxicity: no<br>information              | Due to the lack of<br>detailed information it<br>is unclear whether the<br>test is in complete<br>accordance with OECD<br>TG 476.                                                                                                              | 1978a)                                   |
| Bacterial gene mutation test<br>Xylene                                                                                                                                                                                                                                                                                                                                     | Negative                                                                           | Only limited information (abstract) is available.                                                                                                                                                                                              | (Lebowitz et<br>al., 1979)               |

| SUMMARY OF GENOTOXICITY STUDIES                                                                                                           |                                                                                                                     |                                                                                                       |                            |
|-------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|----------------------------|
| Method/Study Type/Test<br>substance                                                                                                       | Results                                                                                                             | Remarks                                                                                               | Source                     |
| Purity: No information on relative composition.                                                                                           |                                                                                                                     |                                                                                                       |                            |
| <i>In vitro</i> gene mutation test<br>(MLA, L5178Y cells)                                                                                 | Negative                                                                                                            | Only limited information (abstract) is available.                                                     | (Lebowitz et<br>al., 1979) |
| Xylene<br>Purity: No information on relative<br>composition.                                                                              |                                                                                                                     |                                                                                                       |                            |
| Bacterial gene mutation test                                                                                                              | Negative ± metabolic<br>activation                                                                                  | Not in accordance with<br>OECD TG471 (e.g.:                                                           | (Florin et al.,<br>1980)   |
| m-Xylene<br>S. typhimurium tester strains: TA 98, TA<br>100                                                                               | Cytotoxicity: at<br>30 µmol/plate                                                                                   | only two Salmonella<br>typhimurium strains<br>were tested; no E.coli<br>strain was tested; no         |                            |
| Test concentrations: 0.03, 0.3, 3.0 and 30 $\mu$ mol/plate (equivalent to 3.2, 32.0, 320 and 3200 $\mu$ g/plate) (± metabolic activation) |                                                                                                                     | information on<br>negative/solvent<br>controls).                                                      |                            |
| Purity: No information                                                                                                                    |                                                                                                                     |                                                                                                       |                            |
| p-Xylene<br>S. typhimurium tester strains: TA 98, TA<br>100                                                                               | Negative ± metabolic<br>activation                                                                                  | None                                                                                                  | (Florin et al.,<br>1980)   |
| Test concentrations: 0.03, 0.3, 3.0 and 30 µmol/plate (equivalent to 3.2, 32.0, 320 and 3200 µg/plate) (± metabolic activation)           | Cytotoxicity: at<br>30 µmol/plate                                                                                   |                                                                                                       |                            |
| Purity: No information.                                                                                                                   |                                                                                                                     |                                                                                                       |                            |
| Bacterial gene mutation test                                                                                                              | Negative ± metabolic activation                                                                                     | Deviations from OECD<br>TG471 (e.g.: no E.coli                                                        | (Bos et al.,<br>1981)      |
| o-Xylene<br>S. typhimurium tester strains: TA 1535,<br>TA 1537, TA 1538, TA 98, TA 100                                                    | Cytotoxicity: No<br>increased toxic effects<br>up to the highest                                                    | strain was tested; only<br>one experiment without<br>metabolic activation;<br>taking into account the |                            |
| Test concentrations: 20, 50, 100, 200 and 500 $\mu$ g/plate (± metabolic activation)                                                      | tested concentration<br>± metabolic activation                                                                      | lack of toxicity no<br>justification was given<br>why concentrations<br>higher than 500               |                            |
| Purity: No information.                                                                                                                   |                                                                                                                     | μg/plate were not tested).                                                                            |                            |
| m-Xylene<br>S. typhimurium tester strains: TA 1535,<br>TA 1537, TA 1538, TA 98, TA 100                                                    | Negative ± metabolic activation                                                                                     | None                                                                                                  | (Bos et al.,<br>1981)      |
| Test concentrations: 20, 50, 100, 200 and 500 $\mu$ g/plate (± metabolic activation)                                                      | Cytotoxicity: No<br>increased effects up<br>to the highest tested<br>concentration without<br>metabolic activation. |                                                                                                       |                            |
| Purity: No information.                                                                                                                   |                                                                                                                     |                                                                                                       |                            |
| p-Xylene<br>S. typhimurium tester strains: TA 1535,<br>TA 1537, TA 1538, TA 98, TA 100                                                    | Negative ± metabolic<br>activation                                                                                  | None                                                                                                  | (Bos et al.,<br>1981)      |
| Test concentrations: 20, 50, 100, 200<br>and 500 µg/plate<br>(± metabolic activation)                                                     | Cytotoxicity: No<br>increased effects up<br>to the highest tested<br>concentration without<br>metabolic activation. |                                                                                                       |                            |
| Purity: No information.                                                                                                                   |                                                                                                                     |                                                                                                       |                            |

| Method/Study Type/Test<br>substance                                                                                         | Results                                                                                                            | Remarks                                                                                                           | Source                       |
|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|------------------------------|
|                                                                                                                             |                                                                                                                    |                                                                                                                   |                              |
| <b>DNA repair in bacteria</b><br>(micro suspension assay)                                                                   | Negative ± metabolic<br>activation                                                                                 | Only limited information<br>is available (no<br>guideline available).                                             | (McCarroll et<br>al., 1981b) |
| Xylene<br>E. coli strains:WP2, WP2 uvrA <sup>-</sup> , WP67,<br>CM611, WP100, W3110 and p3478                               |                                                                                                                    |                                                                                                                   |                              |
| <b>DNA repair in bacteria</b><br>(micro suspension Rec-assay)                                                               | Negative ± metabolic activation                                                                                    | Only limited information<br>is available (no<br>guideline available).                                             | (McCarroll et<br>al., 1981a) |
| Xylene<br>Strain: Bacillus subtilis                                                                                         |                                                                                                                    | ,                                                                                                                 |                              |
| Bacterial gene mutation test                                                                                                | Negative ± metabolic<br>activation                                                                                 | Deviations from the<br>OECD TG 471 (e.g.: no                                                                      | (Haworth et<br>al., 1983)    |
| o-Xylene<br>S. typhimurium tester strains: TA 1535,<br>TA 1537, TA 98, TA 100<br>Test concentrations: 1.0, 3.3, 10.0, 33.0, | Cytotoxicity: No<br>effects up to the<br>highest tested<br>concentration without                                   | E.coli strain was tested;<br>it has not been tested<br>up to relevant toxic<br>concentrations).                   |                              |
| 100 µg/plate (without metabolic activation)                                                                                 | metabolic activation.                                                                                              |                                                                                                                   |                              |
| Test concentrations: 3.3, 10.0, 33.0, 100 and 333.3 $\mu$ g/plate (with metabolic activation)                               |                                                                                                                    |                                                                                                                   |                              |
| Purity: 97 %                                                                                                                |                                                                                                                    |                                                                                                                   |                              |
| m-Xylene<br>S. typhimurium tester strains: TA 1535,<br>TA 1537, TA 98, TA 100                                               | Negative ± metabolic<br>activation                                                                                 | None                                                                                                              | (Haworth et<br>al., 1983)    |
| Test concentrations: 0.3, 1.0, 3.3 10.0<br>and 33.0 µg/plate (± metabolic<br>activation)                                    | Cytotoxicity: No<br>increased effects up<br>to the highest tested<br>concentration without<br>metabolic activation |                                                                                                                   |                              |
| Purity: 97%                                                                                                                 |                                                                                                                    |                                                                                                                   |                              |
| p-Xylene<br>S. typhimurium tester strains: TA 1535,<br>TA 1537, TA 98, TA 100                                               | Negative without<br>metabolic activation                                                                           | None                                                                                                              | (Haworth et<br>al., 1983)    |
| Test concentrations: 1.0, 3.3, 10.0, 33,0<br>and 100.0 µg/plate (without metabolic<br>activation)                           | Cytotoxicity: TA 100<br>and TA 1537 at<br>200.0 µg/plate with<br>metabolic activation                              |                                                                                                                   |                              |
| Test concentrations: 3.3, 10.0, 33.0, 100.0 and 200.0 µg/plate (with metabolic activation)                                  |                                                                                                                    |                                                                                                                   |                              |
| Purity: 97%                                                                                                                 |                                                                                                                    |                                                                                                                   |                              |
| Bacterial gene mutation test                                                                                                | Negative ± metabolic activation                                                                                    | Due to the lack of detailed information it                                                                        | (Shimizu et al.<br>1985)     |
| p-Xylene<br>S. typhimurium tester strains: TA 1535,<br>TA 1537, TA 1538, TA 98, TA 100 and<br>E.coli WP2                    | Cytotoxicity: without<br>metabolic activity<br>≥ 50 µg/plate; with<br>S9-mix > 100                                 | is unclear whether the<br>test is in complete<br>accordance with OECD<br>TG 471 (e.g. no<br>information on second |                              |
| Test concentrations: 1.0, 5.0, 10.0, 50.0, 100.0 µg/plate (without metabolic activation)                                    | µg/plate                                                                                                           | experiment).                                                                                                      |                              |
| Purity: 98%                                                                                                                 |                                                                                                                    |                                                                                                                   |                              |
| Bacterial gene mutation test                                                                                                | Negative ± metabolic activation                                                                                    | Deviations from OECD<br>TG 471 (e.g.: no E.coli<br>strain was tested; not                                         | (NTP, 1986)                  |

| SUMMARY OF GENOTOXICITY STUDIES                                                                |                                                                         |                                                                                                         |                            |
|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|----------------------------|
| Method/Study Type/Test<br>substance                                                            | Results                                                                 | Remarks                                                                                                 | Source                     |
| S. typhimurium tester strains: TA 1535,<br>TA 97, TA 98 and TA 100                             |                                                                         | tested up to relevant toxic concentrations).                                                            |                            |
| Test concentrations: 3.0, 10.0, 33.0, 100.0 and 200.0 µg/plate (without metabolic activation)  |                                                                         |                                                                                                         |                            |
| Purity: 9% o-xylene, 60% m-xylene,<br>14% p-xylene, 17% ethylbenzene                           |                                                                         |                                                                                                         |                            |
| <i>In vitro</i> chromosomal aberration test (CHO cells)                                        | Negative ± metabolic<br>activation                                      | Early standard protocol<br>is not in accordance<br>with OECD TG 473.                                    | (NTP, 1986)                |
| Ethylbenzene<br>Test concentrations: 75.0, 100.0 and<br>125.0 μg/ml                            | Cytotoxicity: no<br>information                                         | with OECD 1G 473.                                                                                       |                            |
| Purity: No information.                                                                        |                                                                         |                                                                                                         |                            |
| <i>In vitro</i> sister chromatid exchange<br>assay<br>(CHO cells)                              | Negative ± metabolic<br>activation<br>Cytotoxicity: no                  | Early standard protocol is not in accordance with OECD TG 479.                                          | (NTP, 1986)                |
| Ethylbenzene<br>Test concentrations: 75.5, 99.5 and<br>125.0 µg/ml                             | information                                                             |                                                                                                         |                            |
| Purity: No information.                                                                        |                                                                         |                                                                                                         |                            |
| DNA repair in bacteria<br>(umu-test)                                                           | Negative                                                                | Only limited information<br>is available (no<br>guideline available).                                   | (Nakamura et<br>al., 1987) |
| Xylene<br>S. typhimurium strain: TA1535/pSK 1002                                               |                                                                         |                                                                                                         |                            |
| Test concentration: 36 µg/mL                                                                   |                                                                         |                                                                                                         |                            |
| Purity: No information.                                                                        |                                                                         |                                                                                                         |                            |
| Bacterial gene mutation test<br>Xylene                                                         | Negative ± metabolic activation                                         | Deviation from current<br>OECD TG 471 (no<br>E.coli strain was                                          | (Zeiger et al.,<br>1987)   |
| S. typhimurium tester strains: TA 1535,<br>TA 97, TA 98, TA 100                                | Cytotoxicity: slight<br>effects with and<br>without S9-mix at           | tested).                                                                                                |                            |
| Test concentrations: 3.3, 10.0, 33.0, 100.0 and 200.0 µg/plate (without metabolic activation   | 200 µg/plate                                                            |                                                                                                         |                            |
| Purity: 83.1%                                                                                  |                                                                         |                                                                                                         |                            |
| <i>In vitro</i> mammalian chromosomal<br>aberration test<br>(CHO cells)                        | Negative ± metabolic<br>activation                                      | Due to the lack of<br>detailed information it<br>is unclear whether the                                 | (Anderson et<br>al., 1990) |
| Xylene<br>Test concentrations: 20.1, 50.3 and<br>100.5 µg/mL (without metabolic<br>activation) | Cytotoxicity: No<br>effects with and<br>without metabolic<br>activation | test is in complete<br>accordance with OECD<br>TG 473 (e.g. no<br>information on second<br>experiment). |                            |
| Test concentrations: 15.1, 20.1 and 50.3 $\mu$ g/mL (with metabolic activation)                |                                                                         |                                                                                                         |                            |
| Purity: 83.1% (commercial mixture: no information on relative composition)                     |                                                                         |                                                                                                         |                            |
| <i>In vitro</i> sister chromatid exchange<br>assay<br>(CHO cells)                              | Negative ± metabolic<br>activation                                      | Due to the lack of<br>detailed information it<br>is not clarified whether<br>the test is in complete    | (Anderson et<br>al., 1990) |

| Method/Study Type/Test<br>substance                                                                                                                                                                                                                      | Results                                                                                                                                                                                                                                                   | Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Source                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| Xylene<br>Test concentrations: 5.0, 16.7 and 50.0<br>µg/mL(without metabolic activation)<br>Purity: 83.1% (commercial mixture; no<br>information on relative composition)                                                                                | Cytotoxicity: No<br>effects with and<br>without metabolic<br>activation                                                                                                                                                                                   | accordance with OECD<br>TG 479.                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |
| <i>In vitro</i> mammalian cell gene<br>mutation test<br>(MLA, L5178Y cells)<br>Xylene<br>Test concentrations:16.0, 24.0, 32.0,<br>40.0, 45.0, 48.0, 60.0, 75.0, 90.0 and<br>105.0 μg/mL (without metabolic<br>activation)<br>Purity: Commercial mixture. | Weakly positive<br>without metabolic<br>activation at the<br>highest tested<br>concentration of<br>105.0 µg/mL in two<br>experiments.<br>Cytotoxicity:<br>Extremely toxic at<br>105.0 µg/mL in two<br>expriments (relative<br>total growth 6% or<br>13%). | The weakly positive<br>result is of limited<br>relevance because the<br>mutagenic effect<br>(average mutation<br>frequency: 2.6) was<br>induced in two<br>experiments only at the<br>highest concentration<br>which also induce<br>extreme cytotoxicity.                                                                                                                                                                                                                           | (Myhr et al.,<br>1990) |
| <b>In vitro comet assay</b><br>(Freshly isolated human peripheral<br>lymphocytes)<br>o-Xylene<br>Test concentrations: 50.0, 100.0 and<br>200.0 μM (without metabolic activation)<br>Purity: No information.                                              | Positive at<br>concentrations of<br>100.0 and 200.0 µM<br>Cytotoxicity: Cell<br>viability > 95%<br>Solubility: Limited at<br>concentrations ><br>200 µM                                                                                                   | The positive test results<br>are questionable in<br>their relevance due to<br>many limitations.<br>Limitations:<br>- No guideline available.<br>- No standardized<br>evaluation (visual<br>evaluation by a<br>person:<br>intensity of the tails as<br>evaluation criteria<br>according to an<br>intensity score from<br>class 0 (undamaged)<br>to<br>class 4 (severely<br>damaged).<br>- No use of a metabolic<br>activation system.<br>- No historical controls<br>are available. | (Chen et al.,<br>2008) |
| m-Xylene<br>Test concentrations: 50.0, 100.0 and<br>200.0 µM (without metabolic activation)<br>Purity: No information.                                                                                                                                   | Positive at<br>concentrations of<br>100.0 and 200 µM<br>Cytotoxicity: Cell<br>viability > 95%<br>Solubility: Limited at<br>concentrations ><br>200 µM                                                                                                     | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (Chen et al.,<br>2008) |
| p-Xylene<br>Test concentrations: 50.0, 100.0 and<br>200.0 μM (without metabolic activation)<br>Purity: No information.<br>Ethylbenzene<br>Test concentrations: 50.0, 100.0 and<br>200.0 μM (without metabolic activation)                                | Positive at<br>concentrations from<br>50 µM upwards<br>Cytotoxicity: Cell<br>viability > 95%<br>Solubility: Limited at<br>concentrations ><br>200 µM                                                                                                      | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (Chen et al.,<br>2008) |

| SUMMARY OF GENOTOXICITY ST                                                                                        |                                                    |                                                                                                                                         |                            |
|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| Method/Study Type/Test<br>substance                                                                               | Results                                            | Remarks                                                                                                                                 | Source                     |
|                                                                                                                   | Positive at<br>concentrations of 100<br>and 200 µM |                                                                                                                                         |                            |
|                                                                                                                   | Cytotoxicity: Cell<br>viability > 95%              |                                                                                                                                         |                            |
|                                                                                                                   | Solubility: Limited at concentrations > 200 µM     |                                                                                                                                         |                            |
|                                                                                                                   | In vivo                                            |                                                                                                                                         |                            |
| Rodent dominant lethal test (in vivo<br>test)<br>Xylene<br>Test animals: male/female rats (strain:<br>Long-Evans) | Negative                                           | Due to the lack of<br>detailed information it<br>is not clarified whether<br>the test is in complete<br>accordance with OECD<br>TG 478. | 1973)                      |
| Exposure: i.p. (once; males)                                                                                      |                                                    |                                                                                                                                         |                            |
| Doses: 1.0 mL/kg bw                                                                                               |                                                    |                                                                                                                                         |                            |
| Purity: No information on relative composition.                                                                   |                                                    |                                                                                                                                         |                            |
| Rodent dominant lethal test (in vivo<br>test)                                                                     | Negative                                           | Due to the lack of<br>detailed information it<br>is not clarified whether                                                               | (<br>1973)                 |
| Xylene<br>Test animals: male/female mice (strain:<br>Swiss Webster)                                               |                                                    | the test is in complete<br>accordance with OECD<br>TG478.                                                                               | 1575)                      |
| Exposure: i.p. (once; males)                                                                                      |                                                    |                                                                                                                                         |                            |
| Doses: 1.0 mL/kg bw                                                                                               |                                                    |                                                                                                                                         |                            |
| Purity: No information on relative composition.                                                                   |                                                    |                                                                                                                                         |                            |
| In vivo chromosome aberration test                                                                                | Negative                                           | Due to the lack of detailed information it                                                                                              | (                          |
| Xylene<br>Test animals: mMale rats                                                                                |                                                    | is not clarified whether<br>the test is in complete                                                                                     | 1978a)                     |
| Target cells: Bone marrow cells                                                                                   |                                                    | accordance with OECD<br>TG 476 (e.g. no                                                                                                 |                            |
| Exposure: i.p (once)                                                                                              |                                                    | justification why only<br>males were tested;                                                                                            |                            |
| Sampling time: 6, 24 and 48h after dosing                                                                         |                                                    | choice of tested doses<br>is not comprehensible).                                                                                       |                            |
| Doses: 0.044, 0.147 and 0.441 mL/kg<br>bw                                                                         |                                                    |                                                                                                                                         |                            |
| Purity: 11.4% o-xylene, 52.07% m-<br>xylene, 0.31% p-xylene, 36.8%<br>ethylbenzene                                |                                                    |                                                                                                                                         |                            |
| In vivo chromosome aberration test                                                                                | Negative                                           | Only limited information (abstract) is available.                                                                                       | (Lebowitz et<br>al., 1979) |
| Xylene<br>Test animals: Rats                                                                                      |                                                    | (ausu act) is available.                                                                                                                | ai., 19/9)                 |
| Target cells: Bone marrow cells                                                                                   |                                                    |                                                                                                                                         |                            |
| Exposure: i.p                                                                                                     |                                                    |                                                                                                                                         |                            |

| SUMMARY OF GENOTOXICITY STU                                                                                                                                                                                                                                        | DIES                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                       |                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| Method/Study Type/Test<br>substance                                                                                                                                                                                                                                | Results                                                                                                                                                                                                                                                                                                                           | Remarks                                                                                                                                                                                                                                                               | Source                       |
| Purity: No information on relative composition.                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                       |                              |
| In vivo chromosome aberration test                                                                                                                                                                                                                                 | Negative                                                                                                                                                                                                                                                                                                                          | Only limited information (abstract) is available.                                                                                                                                                                                                                     | (Donner et al.,<br>1980)     |
| Xylene<br>Test animals: Rats                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                       |                              |
| Target cells: Bone marrow cells                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                       |                              |
| Exposure: Inhalation (6 h daily, 5 days/week for 9, 14 and 18 weeks)                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                       |                              |
| Sampling time: After 9, 14 and 18 weeks after exposure                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                       |                              |
| Doses: 300 ppm                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                       |                              |
| Purity: No information on relative composition.                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                       |                              |
| Sex-linked recessive lethal test in<br>Drosophila melanogaster<br>m-Xylene, o-xylene, ethylbenzene<br>Purity: No information.<br>Xylene<br>Purity: technical grade xylene (18.3%<br>ethylbenzene)                                                                  | Negative: m-xylene,<br>o-xylene,<br>Ehylbenzene<br>Weakly positive:<br>Xylene                                                                                                                                                                                                                                                     | Only limited information<br>(abstract) is available.<br>Due to the lack of<br>detailed information it<br>is not clear whether the<br>test is in complete<br>accordance with OECD<br>TG 477 nor can the<br>relevance of the weakly<br>positive result be<br>evaluated. | (Donner et al.,<br>1980)     |
| Analysis of sperm abnormalities<br>o-Xylene<br>Test animals: rats (strain: Sprague<br>Dawley)<br>Exposure: i.p. (twice, 24 h apart)<br>Doses: 0.5 and 1.5 mL/kg bw (430 and<br>1290 mg/kg bw)<br>Sampling time: 5 weeks after injection<br>Purity: No information. | Negative (at both<br>tested doses if rats<br>housed at<br>temperatures of<br>20-24 °C)<br>Positive<br>(only 0.5 mL/kg bw<br>were tested; rats<br>housed at<br>temperatures<br>between 24-30 °C)<br>Conclusion by the<br>authors: No<br>conclusive evidence<br>for mutagenic effects<br>but for biological<br>activity of o-xylene | No mutagenicity/<br>genotoxicity test<br>(crucial deficiency: lack<br>of a positive control)                                                                                                                                                                          | (Washington et<br>al., 1983) |
| Human study<br>Sister chromatid exchange assay<br>Xylene<br>Subjects: Workers occupationally<br>exposed to xylene; control group                                                                                                                                   | Negative                                                                                                                                                                                                                                                                                                                          | None                                                                                                                                                                                                                                                                  | (Pap and<br>Varga, 1987)     |
| Purity: technical mixture (o-, m-, p-<br>xylenes; 6-15% ethylbenzene)                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                       |                              |

| SUMMARY OF GENOTOXICITY STUDIES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                  |                                                                                                                                                                                                                                                    |                                  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--|
| Method/Study Type/Test<br>substance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Results                          | Remarks                                                                                                                                                                                                                                            | Source                           |  |
| Mammalian erythrocyte<br>micronucleus test<br>Test animals: Male mice (strain: NMRI)<br>Target cells: Bone marrow<br>Exposure: i.p.; each dose was<br>administered twice (24 hours apart)<br>Doses: The respective highest tested<br>dose does not exceed 70% of the LD50<br>(LD50: 1.55 mL/kg bw (o-xylene); 2,003<br>mL/Kg bw (m-xylene); 2.45 mL/kg bw<br>(p-xylene)<br>Sampling time: 6 h after second injection<br>o-Xylene, (2x) 0.12, 0.25, 0.37 and 0.50<br>mL/kg bw<br>2x) 106, 220, 329 and 440 mg/kg bw),<br>purity: 98%<br>m-Xylene, (2x) 0.37, 0.5, 0.62 and 0.75<br>mL/kg bw<br>(105–650 mg/kg bw), purity: 98%<br>p-Xylene, (2x) 0.37, 0.5, 0.62 and 0.75<br>mL/kg bw<br>(319, 431, 534 and 646 mg/kg bw)<br>Purity: 98% | Negative<br>Negative<br>Negative | Deviations from OECD<br>TG 474 (e.g. no<br>justification why only<br>males were tested; no<br>justification why the<br>respective highest<br>tested dose is lower<br>than the MTD;<br>divergent sampling<br>time after two-time<br>administration) | (Mohtashamip<br>ur et al., 1985) |  |

#### 7.9.5.1. Summary of genotoxicity

Assuming that the mixed xylenes in the respective tests contained all single xylene isomers in sufficient amounts (as a rule this information is not available) read-across of the results to single xylene isomers can be accepted (otherwise there would be numerous data gaps).

Based on a synopsis of all data, the weakly positive test result in Drosophila is not considered relevant.

Possible concerns based on the positive results from the *in vitro* Comet assays with the single isomers are alleviated by the available *in vivo* tests (micronucleus test with the single isomers, chromosome aberration test, SCE, and Dominant Lethal test with xylene). Moreover some doubts are cast on the reliability of the results of the *in vitro* Comet assay.

In conclusion the eMSCA finds that the available data do not point at a genotoxic concern for mixed xylenes or any of the individual xylene isomers.

A tabular overview of the results from the genotoxicity studies performed with the members of the xylene/ethylbenzene category members can be found in the matrix table in section 7.9.10.

#### 7.9.6. Carcinogenicity

| SUMMARY OF STUDIES ON CARCINOGENICITY                                                                  |                                                                     |         |                            |
|--------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|---------|----------------------------|
| Method/Study Type/Test substances                                                                      | Results                                                             | Remarks | Source                     |
| Combined chronic and carcinogenicity oral gavage study in rats, 103 wk, 5 d/wk<br>0-250-500 mg/kg bw/d | NOAEL carcinogenicity =<br>500 mg/kg bw/d (highest dose<br>tested)  | None    | (NTP, 1986)                |
| Xylene: 9% o-, 60% m-, 14% p-xylene, 17% ethylbenzene                                                  |                                                                     |         |                            |
| Combined chronic and carcinogenicity (2-yr)<br>oral gavage study in mice<br>0-500-1000 mg/kg bw/d      | NOAEL carcinogenicity =<br>1000 mg/kg bw/d (highest<br>dose tested) | None    | (NTP, 1986)                |
| Xylene: 9% o-, 60% m-, 14% p-xylene, 17% ethylbenzene                                                  |                                                                     |         |                            |
| BALB/c-3T3 cell transformation assay<br>Xylene, purity/composition not reported                        | Evaluated as inactive                                               | None    | (Matthews et<br>al., 1993) |

#### 7.9.6.1. Summary of carcinogenicity

In 1986 the US National Toxicity Program has performed two oral combined chronic toxicity and carcinogenicity studies in rats and mice, in which no increased incidence of tumours in treated groups up to the highest dose of 500 (rats) or 1000 (mice) mg/kg bw/d was observed. In conjunction with the synopsis of the available data base on genotoxicity, the eMSCA finds that at this point in time, there is no concern about a carcinogenic potential of the xylene isomers.

# **7.9.7.** Toxicity to reproduction (effects on fertility and developmental toxicity)

| SUMMARY OF STUDIES ON TOXICITY TO REPRODUCTION                                                                                                                                                             |                                                                                                                                                                                                                     |                               |                              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|------------------------------|
| Method/Study Type/Test<br>substances                                                                                                                                                                       | Results                                                                                                                                                                                                             | Remarks                       | Source                       |
|                                                                                                                                                                                                            | Developmental toxicity                                                                                                                                                                                              |                               |                              |
| Inhalation study on pre-natal<br>development in CFY rats, 24 h/d,<br>gestation days 9-14<br>1000 mg/m <sup>3</sup> (230 ppm)<br>Xylene (10% o-xylene, 50% m-<br>xylene, 20% p-xylene, 20%<br>ethylbenzene) | No effect on incidence of<br>malformations<br>Increase in skeletal variations<br>(extra ribs, fused sternebrae)                                                                                                     | Exposure only<br>from d9 -d14 | (Hudak and<br>Ungvary, 1978) |
| Pre-natal development inhalation<br>study in rats, gestation days 6-15,<br>0-100-400 ppm<br>Xylene (36.08% ethylbenzene,<br>0.3% p-xylene, 52.07% m-xylene,<br>11.4% o-xylene)                             | Slight dose-related increase of<br>resorptions (33-40-52% at 0-100-<br>400 ppm), statistical significance<br>unclear<br>Significant increase in skeletal<br>variations (mostly retarded<br>ossification) at 400 ppm | Exposure only from d6-15      | ( <b>1978b</b> )             |

| Method/Study Type/Test<br>substances                                                                                                                           | Results                                                                                                                                                                                                                                                                     | Remarks                                                                    | Source                      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------|
| Inhalation study on pre-natal<br>development in CFY rats, 24 h/d,<br>gestation days 7-14                                                                       | Xylenes found in foetal blood and amniotic fluid                                                                                                                                                                                                                            | Exposure only<br>from d7 -d14                                              | (Ungvary et al.,<br>1980)   |
| O-150-1500-3000 mg/m <sup>3</sup> (0-34-<br>340-680 ppm)<br>Satellite groups for toxicokinetics<br>(only exposed on gestation day 18)<br>D-, m-, p-Xylene ≥99% | 680 ppm, all isomers: maternal<br>toxicity, decreased foetus wt,<br>skeletal retardation, decreased<br>activity of succinic dehydrogenase,<br>alkaline and acid phosphatase, and<br>glucose 6-phosphatase,<br>Dose-dependent retardation of<br>foetuses, p- > o- > m-xylene |                                                                            |                             |
|                                                                                                                                                                | m-/p-Xylene: extra ribs,<br>preimplantation loss at 680 ppm                                                                                                                                                                                                                 |                                                                            |                             |
|                                                                                                                                                                | p-Xylene: postimplantation loss at<br>680 ppm                                                                                                                                                                                                                               |                                                                            |                             |
|                                                                                                                                                                | o-Xylene without effect on extra<br>ribs, implantation,<br>or pre- and postimplantation foetal<br>losses, but on foetal wt and<br>number of weight-retarded<br>foetuses at ≥ 340 ppm                                                                                        |                                                                            |                             |
| Pre-natal development gavage<br>study in CD 1 mice, 3 /d, gestation<br>days 6-15                                                                               | Mortality (12/38 dams) and<br>significant decrease in average<br>weight gain during pregnancy,<br>significantly greater percentage of                                                                                                                                       | Very high<br>doses close to<br>LD <sub>50</sub> with high<br>maternal      | (Marks et al.,<br>1982)     |
| 2.4-3.0-3.6 mL/kg bw/d                                                                                                                                         | resorptions at 3.6 mL/kg bw/d                                                                                                                                                                                                                                               | mortality                                                                  |                             |
| Xylene (60.2% m-xylene, 9.1% o-<br>xylene, 13.6% p-xylene, and 17.0%                                                                                           | Decrease in foetal weights at $\geq$ 2.4 mL/kg/d                                                                                                                                                                                                                            |                                                                            |                             |
| ethylbenzene)                                                                                                                                                  | Significantly greater average<br>percent of malformed foetuses<br>(major malformation: cleft palate)<br>at all dose levels                                                                                                                                                  |                                                                            |                             |
| Pre-natal development inhalation<br>study in SD rats, gestation days 7-<br>16                                                                                  | Maternal weight gain decreased<br>during treatment period at 1600<br>ppm                                                                                                                                                                                                    | Exposure only<br>from d7 –d16                                              | (Rosen et al.,<br>1986)     |
| Auditory startle test, maze test<br>3500-7000 mg/m³ (800-1600 ppm)<br>o-Xylene, purity ≥ 99%                                                                   | No effects on litter size or weight,<br>growth rate, acoustic startle<br>response, or "figure 8" maze<br>activity                                                                                                                                                           |                                                                            |                             |
| Embryotoxicity in vitro                                                                                                                                        | No increased incidence of                                                                                                                                                                                                                                                   | Results cannot                                                             | (Brown-                     |
| Xylene, purity ≥ 99%, composition:<br>50% p-, 22% o-xylene, 18%<br>ethylbenzene                                                                                | malformations, but dose-related<br>embryotoxicity                                                                                                                                                                                                                           | be transferred<br>to the in vivo<br>situation in a<br>quantitative<br>way. | Woodman et al.<br>1991)     |
| Pre-natal development in Wistar<br>rats, days 4-20 of gestation, 500<br>opm                                                                                    | No maternal toxicity<br>No exposure-related differences                                                                                                                                                                                                                     | Only one dose<br>level                                                     | (Hass and<br>Jakobsen, 1993 |
| Xylene, purity and/or composition                                                                                                                              | except for delayed ossification of<br>os maxillare                                                                                                                                                                                                                          |                                                                            |                             |
| not reported                                                                                                                                                   | Xylene-exposed pups displayed<br>higher body weight and impaired<br>rotarod performance                                                                                                                                                                                     |                                                                            |                             |
| Pre-natal development vapour<br>nhalation study in rats including<br>neurological parameters, 6 h/d,<br>gestation days 7-20, 0-500 ppm                         | No pregnancy-related parameters affected                                                                                                                                                                                                                                    | Only one dose<br>level                                                     | (Hass et al.,<br>1995)      |

| Method/Study Type/Test<br>substances                                                                                                                                                                                                            | Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Remarks                                                     | Source                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------|
| Xylene (19% o-xylene, 45% m-<br>xylene, 20% p-xylene, 15%<br>ethylbenzene)                                                                                                                                                                      | Decrease in absolute brain weights<br>of pups, delay in development of<br>the air righting reflex, impairment<br>of performance on the rotarod and<br>in the water maze                                                                                                                                                                                                                                                                                                                                                                                                         |                                                             |                               |
| Wistar rats, 6 h/d, gestation days<br>7-20, 0-500 ppm<br>Xylene, (19% o-xylene, 45% m-<br>xylene, 20% p-xylene, 15%<br>ethylbenzene)                                                                                                            | At the age of 16 weeks, the<br>exposed offspring showed<br>impairments in the Morris maze<br>when the platform was relocated in<br>the pool.<br>Impaired performance after<br>platform relocation was also<br>observed in exposed offspring at<br>28 and 55 weeks of age, although<br>the difference was not statistically<br>significant at 55 weeks<br>LOAEC 500 ppm                                                                                                                                                                                                          | Only one dose<br>level                                      | (Hass et al.,<br>1997)        |
| Pre-natal development inhalation<br>study in SD rats, 6 h/d, gestation<br>days 6-20                                                                                                                                                             | All agents caused a reduction in<br>maternal body weight gain at 1000<br>and 2000 ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | None                                                        | (Saillenfait et<br>al., 2003) |
| 0-100-500-1000-2000 ppm<br>Ethylbenzene, o-, m-, p-xylene and<br>mixed xylenes (15.3%<br>ethylbenzene, 21.3% o-xylene,<br>43.9% m-xylene, 19.4% p-xylene),<br>all ≥ 99.5% pure                                                                  | Decreased corrected weight gain<br>and food consumption at 1000 and<br>2000 ppm ethylbenzene, o-, m- or<br>p-xylene, and at 2000 ppm xylene.<br>No evidence of teratogenic effects<br>after exposure for any substance<br>up to 2000 ppm<br>Foetal toxicity (significant<br>decreases in foetal bw) at $\geq$ 500<br>ppm o-xylene or technical xylene,<br>and $\geq$ 1000 ppm or greater of<br>ethylbenzene, m-, or p-xylene.<br>Significant increase in mean<br>percentage of foetuses per litter<br>with skeletal variations at 2000<br>ppm ethylbenzene, o- and p-<br>xylene |                                                             |                               |
|                                                                                                                                                                                                                                                 | Fertility                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                           | 1                             |
| One-generation study, rats<br>Whole body vapour inhalation<br>0-60-250-500 ppm for 131 d pre-<br>mating, 20 d during mating, from d<br>1-20 of gestation (mated females<br>only) and from day 5-20 of lactation<br>(only females who delivered) | No impact of treatment on fertility<br>Slightly (< 10%) decreased foetal<br>weight, skeletal variations at 500<br>ppm<br>NOAEC 250 ppm<br>LOAEC 500 ppm                                                                                                                                                                                                                                                                                                                                                                                                                         | None                                                        | (                             |
| Xylene, purity: 87-92%, detailed composition not reported                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                             |                               |
| Analysis of sperm abnormalities in<br>SD rats, i.p., 1 x 0.5 or 1.5 mL/kg<br>bw                                                                                                                                                                 | Morphological abnormalities:<br>amorphous heads, and banana-like<br>heads                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Poorly<br>documented,<br>unreliable, not<br>usable for risk | (Washington et<br>al., 1983)  |

### SUMMARY OF STUDIES ON TOXICITY TO REPRODUCTION

| SUMMARY OF STUDIES ON TOXICITY TO REPRODUCTION                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                         |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------------------|--|
| Method/Study Type/Test<br>substances                                                                                                                                                                                                                                                                                                                                                                                                         | Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Remarks | Source                  |  |
| Two-generation reproductive<br>toxicity study in SD rats, 6 h/d from<br>≥ 70 d before mating through<br>lactation of F1 pups<br>0-25-100-500 ppm<br>On lactation days 1-4, females<br>received EB in corn oil via oral<br>gavage at dose levels of 26, 90, and<br>342 mg/kg bw/d, calculated from a<br>PBPK model to provide similar<br>maternal blood AUC as provided by<br>inhalation<br>Ethylbenzene, "stability and purity<br>confirmed" | No effect on survival or clinical<br>observations<br>Decreased body weight gain in<br>male F <sub>0</sub> and F <sub>1</sub> rats of the 500 ppm<br>group in both generations<br>No adverse effects on reproductive<br>performance in either generation:<br>male and female mating and<br>fertility indices, pre-coital intervals,<br>spermatogenic endpoints, ovarian<br>follicle counts, reproductive organ<br>weights, lengths of oestrous cycle<br>and gestation, live litter size,<br>No effect on pup weights,<br>developmental landmarks, and<br>postnatal survival, or macroscopic<br>pathology |         | (Faber et al.,<br>2006) |  |

#### 7.9.7.1. Developmental toxicity

In several studies on developmental toxicity in rats, xylenes caused skeletal variations as well as effects on foetal body weight and foetal neurobehaviour. While maternal toxicity is not always explicitly reported in sufficient detail, it can be assumed that all of the adverse effects observed only occurred at dose levels much higher than those required to trigger neurotoxicity in maternal animals. The overall NOAEC/LOAEC for foetal weight effects was 100/340 ppm.

Based on these observations and the nature of the effects, there are currently no indications that for xylenes classification with respect to developmental effects is required.

The eMSCA notes that at the time of conclusion of the SEV, all developmental studies available had been performed in rats, while at this tonnage level under REACH a study in a second (non-rodent) species is required. As no specific concern for developmental toxicity was found, this issue is seen to lie outside the scope of SEv and was therefore forwarded to ECHA to be clarified under CCH.

#### 7.9.7.2. Fertility

A one-generation with xylene showed no effects on fertility-related parameters 1983) after exposure of rats to concentrations up to 500 ppm. However this study is not equivalent to a two- or extended one-generation study as required by REACH at this tonnage level.

The registrant(s) have waived this requirement by performing read-across to a published two-generation study in rats performed with ethylbenzene (Faber et al., 2006), which did not show relevant effects on fertility up to 500 ppm. As explained below (section 7.9.10), read-across to ethylbenzene is considered plausible in principle by the eMSCA, while the justification provided by the registrant(s) was found insufficient.

#### 7.9.7.3. Summary on Reproductive Toxicity

At the conclusion of the eMSCA's assessment in April 2020, no specific concern was established with regard to developmental toxicity. Since then, new information was provided by the registrants with regard to read-across and developmental toxicity studies in rabbits.

Substance Evaluation Conclusion document EC No 203-396-5, 202-422-2, 203-576-3

This information has not been assessed in-depth by the eMSCA or otherwise reflected in this report. However, ECHA has, in April 2021, formally concluded the compliance check and confirmed that the PNDT study submitted by the registrants is complying with the requested information.

#### 7.9.8. Aspiration hazard

Only one specific study (Hine and Zuidema, 1970) with respect to aspiration hazard is available, however, the test was only able to demonstrate lethality after aspiration, but not the likelihood of aspiration itself.

Nevertheless, according to the CSR, the kinematic viscosity of all xylene isomers is in the range of 0.58-0.76 mm<sup>2</sup>/s at 25 °C which suggests that the criterion for classification given in the CLP regulation ( $\leq$  22.5 mm<sup>2</sup>/s at 40 °C) is clearly met.

In line with the lead registrants the eMSCA therefore concludes that all xylene isomers as well as mixed xylenes should be classified/labelled as "Asp. Tox 1/H304: May be fatal if swallowed and enters airways".

The eMSCA considers that this should be reflected in the self-classification.

#### **7.9.9.** Hazard assessment of physico-chemical properties

o-Xylene, m-xylene and p-xylene are classified as flammable liquid. Therefore a risk assessment of the likelihood and the severity of an event occurring due to physicochemical hazard properties is needed. Flashpoint, explosion limits, vapour pressure, critical chemical reactions are important factors to evaluate the risk. The severity of an event will be also triggered by the substance amount of use per task/in the process and the process condition like temperature, pressure, concentration, ventilation and duration.

#### 7.9.10. Evaluation of the Read-Across-/Category Approach

An overview of the data available for the xylene/ethylbenzene category is given in the matrix table below.

For a comparison of physico-chemical properties, cf. section 7.4.

| MATRIX TABLE FOR HUMAN HEALTH ENDPOINTS                                               |          |                 |           |                    |                                             |
|---------------------------------------------------------------------------------------|----------|-----------------|-----------|--------------------|---------------------------------------------|
| Endpoint                                                                              | o-Xylene | m-Xylene        | p-Xylene  | Ethylbenzene*      | Xylene                                      |
|                                                                                       |          | Acute to        | xicity    |                    |                                             |
|                                                                                       |          | Ora             | I         |                    |                                             |
| Acute oral LD <sub>50</sub> **<br>(mg/kg bw)                                          | No data  | 5404-8253 (rat) | No data   | 3500-5081<br>(rat) | 2707-11438<br>(rat)<br>4583-6646<br>(mouse) |
| Non-lethal<br>effects observed<br>after acute oral<br>application from<br>(mg/kg bw): | No data  | No data         | 250 (rat) | No data            | No data                                     |
| CLH                                                                                   | None     | None            | None      | None               | None                                        |
| Additional self-<br>classification***                                                 | None     | None            | None      | None               | None                                        |
| Classification<br>acc. to eMSCA                                                       | NC       | NC              | NC        | NC                 | NC                                          |

| Endpoint                                                                                   | o-Xylene                                                              | m-Xylene                                                            | p-Xylene                                                              | Ethylbenzene*                                   | Xylene                                |
|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------|---------------------------------------|
|                                                                                            |                                                                       | Derm                                                                |                                                                       |                                                 |                                       |
|                                                                                            |                                                                       | Deni                                                                |                                                                       |                                                 |                                       |
| Acute dermal<br>LD50 <sup>**</sup> (mg/kg<br>bw)                                           | No data                                                               | 14100 (rabbit)                                                      | No data                                                               | 15500-17800<br>(rabbit)                         | 4300 (rat)                            |
| Non-lethal<br>effects reported<br>after acute<br>dermal<br>application from<br>(mg/kg bw): | No data                                                               | No data                                                             | No data                                                               | No data                                         | No data                               |
| CLH                                                                                        | Acute Tox. 4                                                          | Acute Tox. 4                                                        | Acute Tox. 4                                                          | None                                            | Acute Tox. 4                          |
| Additional self-<br>classification***                                                      | None                                                                  | None                                                                | None                                                                  | None                                            | None                                  |
| Classification<br>eMSCA                                                                    | NC                                                                    | NC                                                                  | NC                                                                    | NC                                              | NC                                    |
|                                                                                            | I                                                                     | Inhala                                                              | tion                                                                  |                                                 |                                       |
| Acute inhalation<br>LC₅o** (ppm)                                                           | 6371-6648<br>Mortality<br>observed from<br>~4000 ppm x 6<br>h (rat)   | << 8000-9272<br>Mortality observed<br>from ~5200 ppm<br>x 6 h (rat) | 4740-7574<br>Mortality<br>observed from<br>~3300 ppm x 6<br>h (rat)   | ~4000 (rat)                                     | 4670-8640<br>(rat)                    |
|                                                                                            | 6702-7116<br>Mortality<br>observed from<br>~4000 ppm x 6<br>h (mouse) | 7538-8235<br>Mortality observed<br>from ~4000 ppm<br>x 6 h (mouse)  | 3907-6023<br>Mortality<br>observed from<br>~3600 ppm x 6<br>h (mouse) |                                                 | << 9500 (cat)                         |
| Acute effects<br>observed after<br>inhalation<br>application from<br>(ppm):                | No data                                                               | No data                                                             | 1600 (rat)<br>2500 (mouse)                                            | No data                                         | 200 (human)<br>909 (rat)<br>909 (dog) |
| CLH                                                                                        | Acute Tox. 4                                                          | Acute Tox. 4                                                        | Acute Tox. 4                                                          | Acute Tox. 4                                    | Acute Tox. 4                          |
| Additional self-<br>classification <sup>***</sup>                                          | None                                                                  | None                                                                | None                                                                  | None                                            | None                                  |
| Classification<br>eMSCA                                                                    | Acute Tox. 4<br>STOT SE 3<br>(H336)                                   | Acute Tox. 4<br>STOT SE 3<br>(H336)                                 | Acute Tox. 4<br>STOT SE 3<br>(H336)                                   | Acute Tox. 4<br>STOT SE 3<br>(H336)             | Acute Tox. 4<br>STOT SE 3<br>(H336)   |
|                                                                                            |                                                                       | Irritation/C                                                        | Corrosion                                                             |                                                 |                                       |
|                                                                                            |                                                                       | Skii                                                                | n                                                                     |                                                 |                                       |
| Skin<br>irritation/corrosi<br>on                                                           | Irritant<br>(rabbits)<br>Non-irritant<br>(pigs)                       | Irritant (rabbits)                                                  | Irritant<br>(rabbits)                                                 | Irritant<br>(rabbits)<br>Non-irritant<br>(pigs) | Irritant<br>(rabbits)                 |
| CLH                                                                                        | Skin Irrit. 2                                                         | Skin Irrit. 2                                                       | Skin Irrit. 2                                                         | None                                            | Skin Irrit. 2                         |
| Additional self-<br>classification***                                                      | None                                                                  | None                                                                | None                                                                  | Skin Irrit. 2                                   | None                                  |
| Classification<br>acc. to eMSCA                                                            | Skin Irrit. 2                                                         | Skin Irrit. 2                                                       | Skin Irrit. 2                                                         | Skin Irrit. 2                                   | Skin Irrit. 2                         |

| MATRIX TABLE                               | FOR HUMAN HEA                                                      | LTH ENDPOINTS                                                      |                                                                    |                     |                                                                                           |
|--------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|---------------------|-------------------------------------------------------------------------------------------|
| Endpoint                                   | o-Xylene                                                           | m-Xylene                                                           | p-Xylene                                                           | Ethylbenzene*       | Xylene                                                                                    |
| Eye<br>irritation/corrosi<br>on            | Unclear,<br>considered<br>irritant by<br>registrant                | Unclear,<br>considered irritant<br>by registrant                   | No data                                                            | Irritant            | Unclear,<br>considered<br>irritant by<br>registrant                                       |
| CLH                                        | None                                                               | None                                                               | None                                                               | None                | None                                                                                      |
| Additional self-<br>classification***      | Eye Irrit. 2                                                       | Eye Dam. 1<br>Eye Irrit. 2                                         | Eye Irrit. 2                                                       | Eye Irrit. 2        | Eye Irrit. 2                                                                              |
| Classification<br>acc. to eMSCA            | NC                                                                 | NC                                                                 | NC                                                                 | Eye Irrit. 2        | NC                                                                                        |
|                                            |                                                                    | Respirato                                                          | ry tract                                                           |                     |                                                                                           |
| Sensory<br>irritation (RD50<br>mouse, ppm) | 1467                                                               | No data                                                            | No data                                                            | 1432                | ≥ 1300                                                                                    |
| Respiratory tract irritation               | Slightly irritant<br>(mouse)                                       | NA                                                                 | NA                                                                 | Irritant            | NA                                                                                        |
| CLH                                        | None                                                               | None                                                               | None                                                               | None                | None                                                                                      |
| Additional self-<br>classification***      | STOT SE 3<br>(H335)                                                | STOT SE 3<br>(H335)                                                | STOT SE 3<br>(H335)                                                | STOT SE 3<br>(H335) | STOT SE 3<br>(H335)                                                                       |
| Classification<br>acc. to eMSCA            | STOT SE 3<br>(H335)                                                | STOT SE 3<br>(H335)                                                | STOT SE 3<br>(H335)                                                | STOT SE 3<br>(H335) | STOT SE 3<br>(H335)                                                                       |
|                                            |                                                                    | Skin sensi                                                         | tisation                                                           |                     |                                                                                           |
| DPRA                                       | No data                                                            | No data                                                            | No data                                                            | No data             | Negative                                                                                  |
| Keratinosens                               | No data                                                            | No data                                                            | No data                                                            | No data             | Negative                                                                                  |
| LuSens                                     | No data                                                            | No data                                                            | No data                                                            | No data             | Negative                                                                                  |
| MUSST                                      | No data                                                            | No data                                                            | No data                                                            | No data             | Negative                                                                                  |
| mMUSST                                     | No data                                                            | No data                                                            | No data                                                            | No data             | Negative                                                                                  |
| НМТ                                        | No data                                                            | No data                                                            | No data                                                            | Negative            | Negative                                                                                  |
| LLNA                                       | No data                                                            | No data                                                            | No data                                                            | No data             | Positive (weak)                                                                           |
| Buehler                                    | No data                                                            | No data                                                            | No data                                                            | No data             | No data                                                                                   |
| GPMT                                       | No data                                                            | No data                                                            | No data                                                            | No data             | No data                                                                                   |
| HPT                                        | No data                                                            | No data                                                            | No data                                                            | No data             | Negative                                                                                  |
| CLH                                        | None                                                               | None                                                               | None                                                               | None                | None                                                                                      |
| Additional self-<br>classification***      | None                                                               | None                                                               | None                                                               | None                | None                                                                                      |
| Classification<br>acc. to eMSCA            | NC                                                                 | NC                                                                 | NC                                                                 | NC                  | NC                                                                                        |
|                                            | ·                                                                  | Repeated Dos                                                       | e Toxicity                                                         | ·                   |                                                                                           |
|                                            |                                                                    | Ora                                                                | I                                                                  |                     |                                                                                           |
| Subacute                                   | NOEL = 250<br>mg/kg bw/d<br>(liver wt)<br>NOAEL = 1000<br>mg/kg bw | NOEL = 250<br>mg/kg bw/d (liver<br>wt)<br>NOAEL = 1000<br>mg/kg bw | NOEL = 250<br>mg/kg bw/d<br>(liver wt)<br>NOAEL = 1000<br>mg/kg bw | No data             | NOAEL = 1000<br>mg/kg bw/d<br>(rats, mice)<br>Mortality from<br>2000 mg/kg<br>bw/d, 14 d) |

| MATRIX TABLE FOR HUMAN HEALTH ENDPOINTS |                                                                                           |                                                                                                                                               |                                                                                       |                                                                                                                                                                     |                                                                                                                          |
|-----------------------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| Endpoint                                | o-Xylene                                                                                  | m-Xylene                                                                                                                                      | p-Xylene                                                                              | Ethylbenzene*                                                                                                                                                       | Xylene                                                                                                                   |
|                                         |                                                                                           |                                                                                                                                               |                                                                                       |                                                                                                                                                                     |                                                                                                                          |
| Subchronic                              | No data                                                                                   | No data                                                                                                                                       | No data                                                                               | NOAEL = 150-<br>500 mg/kg<br>bw/d (rat, 13<br>wk, bwg<br>decrease,<br>liver/kidney wt)<br>NOAEL = 1000<br>mg/kg bw<br>(mice,<br>mortality at<br>2000 mg/kg<br>bw/d) | NOAEL = 150-<br>500 mg/kg<br>bw/d (rats)<br>NOAEL = 1000<br>mg/kg bw/d<br>(mice)                                         |
|                                         |                                                                                           |                                                                                                                                               |                                                                                       | 6-mo NOAEL<br>< 408 mg/kg<br>bw/d (rats)                                                                                                                            |                                                                                                                          |
| Chronic                                 | No data                                                                                   | No data                                                                                                                                       | No data                                                                               | No data                                                                                                                                                             | NOAEL = 250<br>mg/kg bw/d (2<br>yr rat,<br>decreased<br>survival)                                                        |
|                                         |                                                                                           |                                                                                                                                               |                                                                                       |                                                                                                                                                                     | NOAEL = 500<br>mg/kg bw/d<br>(2 yr mouse,<br>clinical signs)                                                             |
|                                         |                                                                                           | Derm                                                                                                                                          | al                                                                                    |                                                                                                                                                                     |                                                                                                                          |
| Subacute                                | No data                                                                                   | No data                                                                                                                                       | No data                                                                               | No data                                                                                                                                                             | No data                                                                                                                  |
| Subchronic                              | No data                                                                                   | No data                                                                                                                                       | No data                                                                               | No data                                                                                                                                                             | No data                                                                                                                  |
| Chronic                                 | No data                                                                                   | No data                                                                                                                                       | No data                                                                               | No data                                                                                                                                                             | No data                                                                                                                  |
|                                         | 1                                                                                         | Inhala                                                                                                                                        | tion                                                                                  |                                                                                                                                                                     |                                                                                                                          |
| Subacute                                | LOAEC 2000<br>ppm (3 d<br>neurotransmitte<br>r)<br>NOAEC 1800<br>ppm (ototxicity,<br>HDT) | LOAEC 100 ppm<br>(behaviour/learnin<br>g)<br>LOAEC 2000 ppm<br>(3 d<br>neurotransmitter)<br>NOAEC 1800 ppm<br>(ototoxicity, HDT)              | LOAEC 2000<br>ppm (3 d<br>neurotransmitte<br>r)<br>LOAEC 1800<br>ppm<br>(ototoxicity) | No data                                                                                                                                                             | LOAEC 2000<br>ppm (3 d<br>neurotransmitte<br>r)                                                                          |
| Subchronic                              | NOAEC = 1800<br>ppm<br>(ototoxicity,<br>HDT)                                              | LOAEC =<br>1000 ppm<br>(3 mo. rat,<br>rotarod, motor<br>activity)<br>LOAEC<br>100 ppm<br>(6 mo., rat)<br>NOAEC<br>≥ 1800 ppm<br>(ototoxicity) | NOAEC =<br>450 ppm<br>LOAEC =<br>900 ppm<br>(ototoxicity)                             | NOAEC<br>< 200 ppm<br>(ototoxicity)                                                                                                                                 | 90-d NOAEC ca.<br>810 ppm (rats,<br>6 h/d, 5 d/wk,<br>highest dose<br>tested)<br>NOAEC<br>< 250-500 ppm<br>(ototoxicity) |
| Chronic                                 | No data                                                                                   | No data                                                                                                                                       | No data                                                                               | No data                                                                                                                                                             | No data                                                                                                                  |
| CLH                                     | None                                                                                      | None                                                                                                                                          | None                                                                                  | STOT RE2<br>H373<br>(hearing<br>organ)                                                                                                                              | None                                                                                                                     |

| MATRIX TABLE F                                                          | OR HUMAN HEA                           | LTH ENDPOINTS                       |                                        |                                         |                                         |
|-------------------------------------------------------------------------|----------------------------------------|-------------------------------------|----------------------------------------|-----------------------------------------|-----------------------------------------|
| Endpoint                                                                | o-Xylene                               | m-Xylene                            | p-Xylene                               | Ethylbenzene*                           | Xylene                                  |
| Additional self-<br>classification***                                   | STOT RE2<br>H373<br>(hearing<br>organ) | STOT RE2<br>H373<br>(hearing organ) | STOT RE2<br>H373<br>(hearing<br>organ) | None                                    | STOT RE2<br>H373<br>(hearing<br>organ)  |
| Classification<br>acc. to eMSCA                                         | NC                                     | NC                                  | NC                                     | STOT RE<br>2/H373<br>(hearing<br>organ) | STOT RE<br>2/H373<br>(hearing<br>organ) |
| Genotoxicity                                                            |                                        |                                     |                                        |                                         |                                         |
|                                                                         |                                        | In vit                              | ro                                     | 1                                       |                                         |
| Bacterial gene<br>mutation test                                         | Negative                               | Negative                            | Negative                               | No data                                 | Negative                                |
| DNA repair in<br>bacteria                                               | No data                                | No data                             | No data                                | No data                                 | Negative                                |
| Saccharomyces<br>cerevisiae gene<br>mutation assay                      | No data                                | No data                             | No data                                | No data                                 | Negative                                |
| <i>In vitro</i><br>mammalian cell<br>gene mutation<br>test              | No data                                | No data                             | No data                                | No data                                 | Negative                                |
| <i>In vitro</i><br>chromosomal<br>aberration test                       | No data                                | No data                             | No data                                | Negative                                | Negative                                |
| <i>In vitro</i> sister<br>chromatid<br>exchange assay                   | No data                                | No data                             | No data                                | Negative                                | Negative                                |
| <i>In vitro</i> comet<br>assay                                          | Positive                               | Positive                            | Positive                               | Positive                                | No data                                 |
|                                                                         |                                        | In viv                              | /0                                     |                                         |                                         |
| <i>In vivo</i> micro-<br>nucleus test                                   | Negative                               | Negative                            | Negative                               | No data                                 | No data                                 |
| <i>In vivo</i><br>chromosome<br>aberration test                         | No data                                | No data                             | No data                                | No data                                 | Negative                                |
| Rodent domi-<br>nant lethal test                                        | No data                                | No data                             | No data                                | No data                                 | Negative                                |
| Sex-linked<br>recessive lethal<br>test in<br>Drosophila<br>melanogaster | Negative                               | Negative                            | No data                                | Negative                                | Positive (weak)                         |
| Human study<br>(Sister<br>chromatid<br>exchange assay)                  | No data                                | No data                             | No data                                | No data                                 | Negative                                |
| CLH                                                                     | None                                   | None                                | None                                   | None                                    | None                                    |
| Additional self-<br>classification***                                   | None                                   | None                                | None                                   | None                                    | None                                    |
| Classification<br>acc. to eMSCA                                         | NC                                     | NC                                  | NC                                     | NC                                      | NC                                      |

| MATRIX TABLE                          | FOR HUMAN HEA                          | ALTH ENDPOINTS                                                           |                                                                                                                                     |                                                |                                                                                                                                    |
|---------------------------------------|----------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| Endpoint                              | o-Xylene                               | m-Xylene                                                                 | p-Xylene                                                                                                                            | Ethylbenzene <sup>*</sup>                      | Xylene                                                                                                                             |
|                                       |                                        | Reproducti                                                               | ve Toxicity                                                                                                                         |                                                |                                                                                                                                    |
|                                       |                                        | Developmen                                                               | tal Toxicity                                                                                                                        |                                                |                                                                                                                                    |
| Oral                                  | No data                                | No data                                                                  | No data                                                                                                                             | No data                                        | Decrease in<br>foetal wt and<br>malformations<br>together with<br>high maternal<br>toxicity from 2<br>mg/kg bw/d<br>(mice)         |
| Dermal                                | No data                                | No data                                                                  | No data                                                                                                                             | No data                                        | No data                                                                                                                            |
| Inhalation                            | 680 ppm:<br>Only maternal<br>tox (rat) | 680 ppm:<br>Maternal tox,<br>extra ribs,<br>implantation<br>losses (rat) | 680 ppm:<br>Maternal tox,<br>extra ribs,<br>implantation<br>losses (rat)<br>1600 ppm<br>NOAEc for<br>developmental<br>neurotoxicity | No data                                        | LOEC =<br>230 ppm: extra<br>ribs, fused<br>sternebrae (rat<br>LOAEC =<br>500 ppm<br>impaired<br>learning/motor<br>activity of pups |
| CLH                                   | None                                   | None                                                                     | None                                                                                                                                | None                                           | None                                                                                                                               |
| Additional self-<br>classification*** | None                                   | None                                                                     | None                                                                                                                                | None                                           | None                                                                                                                               |
| Classification<br>acc. to eMSCA       | NC                                     | NC                                                                       | NC                                                                                                                                  | NC                                             | NC                                                                                                                                 |
|                                       |                                        | Fert                                                                     | ility                                                                                                                               | 1                                              | •                                                                                                                                  |
| Oral                                  | No data                                | No data                                                                  | No data                                                                                                                             | NOAEC<br>inhalation, 2-<br>gen. rat 500<br>ppm | NOAEC<br>inhalation, one-<br>generation rat,<br>500 ppm?                                                                           |
| Dermal                                | No data                                | No data                                                                  | No data                                                                                                                             | No data                                        | No data                                                                                                                            |
| Inhalation                            | No data                                | No data                                                                  | No data                                                                                                                             | No data                                        | No data                                                                                                                            |
| CLH                                   | None                                   | None                                                                     | None                                                                                                                                | None                                           | None                                                                                                                               |
| Additional self-<br>classification*** | None                                   | None                                                                     | None                                                                                                                                | None                                           | None                                                                                                                               |
| Classification<br>acc. to eMSCA       | NC                                     | NC                                                                       | NC                                                                                                                                  | NC                                             | NC                                                                                                                                 |
|                                       | ·                                      | Aspiratio                                                                | n Hazard                                                                                                                            |                                                | ·                                                                                                                                  |
| CLH                                   | None                                   | None                                                                     | None                                                                                                                                | Asp. Tox 1                                     | None                                                                                                                               |
| Additional self-<br>classification*** | Asp. Tox 1                             | Asp. Tox 1                                                               | Asp. Tox 1                                                                                                                          | None                                           | Asp. Tox 1                                                                                                                         |
| Classification<br>acc. to eMSCA       | Asp. Tox 1                             | Asp. Tox 1                                                               | Asp. Tox 1                                                                                                                          | Asp. Tox 1                                     | Asp. Tox 1                                                                                                                         |

\* Part of this information was derived from (German MSCA, 2008) \*\* Ranges are derived from upper/lower 95% confidence limits as reported

\*\*\*Self-classifications which in the view of the eMSCA appeared to be obviously unjustified are omitted (in most cases this concerned only one single notifier and never more than 2% of the notifications) Despite the fact that the justification/ reporting of the read-across approach in the

registration dossiers was found to be insufficient, the eMSCA considers that the above table

Substance Evaluation Conclusion document EC No 203-396-5, 202-422-2, 203-576-3

shows qualitatively that the different isomers and ethylbenzene more or less elicit comparable effects in animals and humans over a variety of endpoints. Most prominently this seems to hold for the acute neurobehavioural effects, which provide the most sensitive starting points for acute toxicity risk assessment.

On a quantitative basis, some differences are observed between the three isomers, however a clear trend was not observed and to some degree, dose selection may be responsible for this observation (many older studies did not establish a NOAEC or LOAEC). One exception is given by ototoxicity, for which the available data show that p-xylene is much more potent than o- or m-xylene (however they not allow to conclude that these two isomers could not be ototoxic at high doses > 1800 ppm).

An assessment of the read-across approach in terms of ECHA's Read-Across Assessment Framework (ECHA, 2017) can be found in section 7.16 (Annex 1).

Given the apparent plausibility of read-across, the eMSCA finds that a request for an update of the read-across justification lied outside the scope of SEv and therefore asked ECHA to open a dossier evaluation on this issue.

# **7.9.11.** Selection of the critical DNEL(s)/DMEL(s) and/or qualitative/semi-quantitative descriptors for critical health effects

Oral exposure to xylenes is not relevant under the scope of this dossier. In addition, with the exception of acute dermal  $LD_{50}$  studies and studies on dermal absorption, no other dermal studies are available, therefore risk assessment for dermal exposure, where applicable, should be performed via route-to-route extrapolation from inhalation studies.

The spectrum of adverse effects observed in animals and/or humans after inhalation of xylene isomers or mixed xylene comprises:

- Neurotoxicity
- Irritation of skin and respiratory tract
- Specific Target Organ Toxicity ototoxicity (p-xylene, ethylbenzene, mixed xylenes)
- Embryo-/foetotoxicity
- Effects on body weight gain and organ weight
- General moribundity and lethality, teratogenicity

Out of the experiments listed in Table 18 to Table 27

(section 7.9.2 to 7.9.8), Table 29 shows those inhalation studies principally qualifying as potential candidates to be used as starting points (Points of Departure, PoDs) for risk assessment, i.e. those considered sufficiently reliable. The studies are grouped according to the respective time-frame (acute/subacute, subchronic, chronic) and listed in the order of ascending LOAECs. Where different isomers were found to display different NOAECs/LOAECs, the isomer with the lowest LOAEC was chosen.

| SUMMARY OF POTENTIAL STARTING POINTS FOR RISK ASSESSMENT BASED ON |  |
|-------------------------------------------------------------------|--|
| AVAILABLE INHALATION STUDIES*                                     |  |

| Reference/design,<br>species/test substance                                                                                                              | Endpoint                                                                                                                                                                                                                                                  | NOAEL/NOAEC | LOAEL/LOAEC |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------|
|                                                                                                                                                          | Acute                                                                                                                                                                                                                                                     |             |             |
| (Ernstgård et al., 2002)<br>1 x 2 h, human                                                                                                               | Subjective self-reporting of irritation                                                                                                                                                                                                                   | < 50 ppm    | 50 ppm      |
| m-Xylene                                                                                                                                                 | Slight decrease in<br>pulmonary function (Forced<br>Expiratory Volume in 1<br>second, FEV <sub>1</sub> ; Forced Vital<br>Capacity, FVC)<br>No effects on acoustic<br>rhinometry, markers of<br>inflammation or blinking<br>frequency<br>Adversity unclear |             |             |
| (Olson et al., 1985)                                                                                                                                     | Simple reaction time, short                                                                                                                                                                                                                               | 68 ppm      | > 68 ppm    |
| 1 x 4 h, human<br>p-Xylene                                                                                                                               | term memory, and choice<br>reaction time at 0, 1 and 4<br>h into exposure were all<br>unaffected                                                                                                                                                          |             |             |
| (Dudek et al., 1990)                                                                                                                                     | Effects on Simple Reaction                                                                                                                                                                                                                                | < 100 ppm   | 100 ppm     |
| 1 x 4 h, human                                                                                                                                           | Time (SRT) and Choice<br>Reaction Time (ChRT)                                                                                                                                                                                                             |             |             |
| Xylene                                                                                                                                                   |                                                                                                                                                                                                                                                           | 100         | 200         |
| (Gamberale et al., 1978)<br>1 x 70 min, human<br>Xylene                                                                                                  | Impact on numerical ability,<br>reaction time (simple and<br>choice), short-term<br>memory, and critical flicker<br>fusion under physical<br>activity                                                                                                     | 100 ppm     | 300 ppm     |
| (Savolainen et al., 1984)<br>1 x (3 h exposure – 40 min<br>break – 60 min exposure)<br>at constant and fluctuating<br>concentrations, human<br>m-Xylene  | Impairment of body balance<br>and audiomotor<br>coordination after peak<br>exposures                                                                                                                                                                      | 200 ppm     | 400 ppm     |
| (Seppalainen et al., 1989)<br>1 x (3 h exposure – 40 min<br>break – 40 min exposure)<br>at constant and fluctuating<br>concentrations, human<br>m-Xylene | Decrease in Visually Evoked<br>Potentials (Flash VEPs) upon<br>physical activity                                                                                                                                                                          | 200 ppm     | 400 ppm     |
| (Laine et al., 1993)<br>1 x 4 h, human<br>m-Xylene                                                                                                       | Decreased body sway;<br>prolonged simple visual<br>reaction times in sedentary<br>subjects and auditory choice<br>reaction times when                                                                                                                     | 200 ppm     | 400 ppm     |

# SUMMARY OF POTENTIAL STARTING POINTS FOR RISK ASSESSMENT BASED ON AVAILABLE INHALATION STUDIES\*

| Reference/design, Endpoint<br>species/test substance                              |                                                                                                                                                                                            | NOAEL/NOAEC | LOAEL/LOAEC |
|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------|
|                                                                                   | combined with physical exercise                                                                                                                                                            |             |             |
| (Carpenter et al., 1975)                                                          | Slight incoordination in rats and lacrimation in dogs                                                                                                                                      | < 909 ppm   | 909 ppm     |
| 1 x 4 h, rat, dog                                                                 |                                                                                                                                                                                            |             |             |
| Xylene                                                                            |                                                                                                                                                                                            |             |             |
| (Dyer et al., 1988)                                                               | Significant amplitude<br>depression of flash-evoked                                                                                                                                        | 800 ppm     | 1,600 ppm   |
| 1 x 4 h, rat                                                                      | potentials (FEP)                                                                                                                                                                           |             |             |
| p-Xylene                                                                          |                                                                                                                                                                                            |             |             |
| (Korsak et al., 1990)                                                             | Sensory irritation                                                                                                                                                                         | < 2,600 ppm | 2,600 ppm   |
| 1 x 6 h, mouse                                                                    |                                                                                                                                                                                            |             |             |
| o-, m-, and p-Xylene                                                              |                                                                                                                                                                                            |             |             |
| (Korsak et al., 1990)                                                             | Effect on rotarod                                                                                                                                                                          | < 3,000 ppm | 3,000 ppm   |
| 1 x 6 h, rat                                                                      | performance in rats                                                                                                                                                                        |             |             |
| o-, m-, and p-Xylene                                                              |                                                                                                                                                                                            |             |             |
|                                                                                   | Subacute                                                                                                                                                                                   |             |             |
| (Savolainen and Pfäffli,<br>1980)<br>2 wk, 5 d/wk, 6 h/d, rat                     | Increase in brain NADPH-<br>diaphorase and<br>azoreductase levels and<br>cerebral RNA                                                                                                      | < 50 ppm    | 50 ppm      |
| m-Xylene                                                                          | Decrease in cerebral<br>glutathione activity already<br>at 50 ppm<br>Adversity of these findings<br>is unclear, interpreted as                                                             |             |             |
| (Gralewicz and Wiaderna,<br>2001)<br>4 wk, 6 h/d, 5 d/wk, rat<br>m-Xylene         | adaptive response<br>Significantly higher<br>spontaneous locomotor<br>activity in the open field,<br>impaired passive avoidance<br>learning and significantly<br>longer paw-lick latencies | < 100 ppm   | 100 ppm     |
|                                                                                   | 24 h after footshock<br>Acquisition of the two-way<br>active avoidance response<br>significantly impaired                                                                                  |             |             |
| (Hudak and Ungvary,<br>1978)<br>PND study in rats, 24 h/d,<br>gestation days 9-14 | Increase in skeletal<br>anomalies (extra ribs, fused<br>sternebrae)                                                                                                                        | < 230 ppm   | 230 ppm     |
| Xylene                                                                            |                                                                                                                                                                                            |             |             |

# SUMMARY OF POTENTIAL STARTING POINTS FOR RISK ASSESSMENT BASED ON AVAILABLE INHALATION STUDIES\*

| Reference/design,<br>species/test substance                                                                                                  | Endpoint                                                                                                                                                                      | NOAEL/NOAEC | LOAEL/LOAEC |
|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------|
| (Ungvary et al., 1980)<br>PND study in rats, 24 h/d,<br>gestation days 7-14<br>o-Xylene                                                      | Decreased foetal weight and<br>number of weight-retarded<br>foetuses                                                                                                          | 34 ppm      | 340 ppm     |
| (PND study in rats,<br>gestation days 6-15<br>Xylene                                                                                         | No maternal toxicity or<br>effects on embryos/foetuses<br>Does not fully cover period<br>of organogenesis                                                                     | 100 ppm     | 400 ppm     |
| (Saillenfait et al., 2003)<br>PND study in rats, 6 h/d,<br>gestation days 6-20<br>o-Xylene, Xylene                                           | Significant decrease in fetal bw at $\geq$ 500 ppm o-xylene or mixed xylenes                                                                                                  | 100 ppm     | 500 ppm     |
| (Faber et al., 2006)<br>Two-generation study in<br>rats, 6 h/d from $\geq$ 70 d<br>before mating through<br>lactation of F <sub>1</sub> pups | Decreased body weight gain<br>in male $F_0$ and $F_1$ rats of the<br>500 ppm group in both<br>generations                                                                     | 100 ppm     | 500 ppm     |
| Ethylbenzene<br>( , 1983)<br>One-generation study in<br>rats<br>Xylene                                                                       | No effect on fertility or development                                                                                                                                         | 250 ppm     | 500 ppm     |
| (Hass and Jakobsen, 1993)<br>PND study in rats,<br>gestation days 4-20<br>Xylene                                                             | Delayed ossification of os<br>maxillare, higher pup<br>weight, impaired rotarod<br>performance of pups                                                                        | < 500 ppm   | 500 ppm     |
| (Hass et al., 1995)<br>PND study in rats, 6 h/d,<br>gestation days 7-20<br>Xylene                                                            | Decrease in absolute brain<br>weights of pups, delay in<br>development of the air<br>righting reflex, impairment<br>of performance on the<br>rotarod and in the water<br>maze | < 500 ppm   | 500 ppm     |
| (Hass et al., 1997)<br>PND study in rats, 6 h/d,<br>gestation days 7-20<br>Xylene                                                            | Impaired performance of<br>pups in maze test at age 16<br>and 28 wk                                                                                                           | < 500 ppm   | 500 ppm     |
| (Honma et al., 1983)                                                                                                                         | Acetylcholine levels in striatum and whole brain                                                                                                                              | 400 ppm     | 800 ppm     |

# SUMMARY OF POTENTIAL STARTING POINTS FOR RISK ASSESSMENT BASED ON AVAILABLE INHALATION STUDIES\*

| Reference/design,<br>species/test substance | Endpoint                                                                                                                                          | NOAEL/NOAEC                                                            | LOAEL/LOAEC                                                            |
|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------|
| 30 d, 24 h/d, rat                           | decreased and brain<br>glutamine levels increased                                                                                                 |                                                                        |                                                                        |
| Xylene                                      | Questionable reliability due to lack of clear dose response                                                                                       |                                                                        |                                                                        |
|                                             | Adversity unclear                                                                                                                                 |                                                                        |                                                                        |
| (Rosen et al., 1986)                        | Decreased maternal weight                                                                                                                         | 800 ppm                                                                | 1,600 ppm                                                              |
| PND study in rats,<br>gestation days 7-16   | gain                                                                                                                                              |                                                                        |                                                                        |
| p-Xylene                                    |                                                                                                                                                   |                                                                        |                                                                        |
| (Maguin et al., 2006)                       | Ototoxicity: A 39-dB<br>permanent threshold shift                                                                                                 | 900 ppm                                                                | 1800 ppm                                                               |
| 3 wk, 6 h/d, 5 d/wk                         | was obtained over the                                                                                                                             |                                                                        |                                                                        |
| 1800 ppm                                    | tested frequencies range<br>from 8 to 20 kHz.                                                                                                     |                                                                        |                                                                        |
| p-xylene                                    | Outer hair cells largely injured                                                                                                                  |                                                                        |                                                                        |
| (Andersson et al., 1981)                    | Changed neurotransmitter<br>levels in different nervous                                                                                           | < 2000 ppm                                                             | 2000 ppm                                                               |
| 3 d, 6 h/d, rat                             | tissues                                                                                                                                           |                                                                        |                                                                        |
| Xylene and o-, m-, p-,<br>isomers           |                                                                                                                                                   |                                                                        |                                                                        |
|                                             | Subchronic                                                                                                                                        | -<br>-                                                                 |                                                                        |
| (Korsak et al., 1994)                       | Significant decrease in paw-<br>lick response time (hot                                                                                           | < 50 ppm                                                               | 50 ppm                                                                 |
| 3 mo, 5 h/d, 6 h/wk, rat                    | plate behaviour)                                                                                                                                  |                                                                        |                                                                        |
| m-Xylene                                    |                                                                                                                                                   |                                                                        |                                                                        |
| (Korsak et al., 1992)                       | Decreased rotarod                                                                                                                                 | < 100 ppm                                                              | 100 ppm                                                                |
| 6 mo, 6 h/d, 5 d/wk, rat                    | performance, decreased spontaneous motor activity                                                                                                 |                                                                        |                                                                        |
| m-Xylene                                    |                                                                                                                                                   |                                                                        |                                                                        |
| (Gralewicz et al., 1995)                    | Learnig deficit in maze test<br>two months post-exposure                                                                                          | < 100 ppm                                                              | 100 ppm                                                                |
| 3 mo, 5 h/d, 6 h/wk, rat                    |                                                                                                                                                   |                                                                        |                                                                        |
| m-Xylene                                    | Development of the age-<br>related spike and wave<br>activity significantly<br>retarded (biological<br>significance unclear)                      |                                                                        |                                                                        |
| (Gagnaire et al., 2007)                     | Increased auditory                                                                                                                                | < 250 – 500 ppm                                                        | 250 - 1000 ppm                                                         |
| 13 wk, 6 h/d, 5 d/wk<br>Xylene              | thresholds and loss of outer<br>hair cells. Concentrations of<br>ethylbenzene in xylene<br>necessary to cause a given<br>ototoxicity were 1.7–2.8 | (depending on<br>composition, i.e.<br>ethylbenzene<br>and, to a lesser | (depending on<br>composition, i.e.<br>ethylbenzene<br>and, to a lesser |

# SUMMARY OF POTENTIAL STARTING POINTS FOR RISK ASSESSMENT BASED ON AVAILABLE INHALATION STUDIES<sup>\*</sup>

| Reference/design,<br>species/test substance                            | Endpoint                                                                                                                                                                                                                                                                                                                                                                                                                         | NOAEL/NOAEC                  | LOAEL/LOAEC                  |
|------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|------------------------------|
|                                                                        | times less than those of pure ethylbenzene                                                                                                                                                                                                                                                                                                                                                                                       | degree, p-xylene<br>content) | degree, p-xylene<br>content) |
| (Carpenter et al., 1975)<br>13 wk, 6 h/d, 5 d/wk,<br>rat/dog<br>Xylene | No effects on blood<br>chemistry, food<br>consumption, body weight,<br>urinalysis, macroscopic<br>pathology                                                                                                                                                                                                                                                                                                                      | 810 ppm                      | > 810 ppm                    |
| (Gagnaire et al., 2001)<br>13 wk, 6 h/d, 6 d/wk<br>p-Xylene            | Moderate to severe<br>ototoxicity in rats exposed<br>at 900 and 1800 ppm. Body<br>weight gain reduction at ≥<br>900 ppm<br>Increased auditory<br>thresholds observed at 2, 4,<br>8, and 16 kHz<br>Auditory threshold shifts<br>(35 to 38 dB) did not<br>reverse after 8 weeks of<br>recovery<br>Moderate and severe losses<br>of outer hair cells of the<br>organ of Corti occurred in<br>animals exposed to 900 and<br>1800 ppm | 450 ppm                      | 900 ppm                      |
| (Korsak et al., 1992)<br>3 mo, 6 h/d, 5 d/wk, rat<br>m-Xylene          | Decreased rotarod<br>performance, decreased<br>spontaneous motor activity,<br>slight decrease in<br>lymphocytes and increase in<br>monocytes of unclear<br>significance                                                                                                                                                                                                                                                          | < 1000 ppm                   | 1000 ppm                     |

\* In order of ascending LOAEC; key studies used for DNEL derivation are highlighted

#### 7.9.11.1. DNEL for acute inhalation

Experiments in humans have shown that levels of 100 ppm (4 h) for m-xylene or 300 ppm (70 min) for mixed xylenes may negatively impact on reaction time and other neurobehavioural performance parameters in humans under physical activity (Dudek et al., 1990; Gamberale et al., 1978). (Olson et al., 1985) showed for p-xylene that 68 ppm was a NOAEC for these effects in humans. The slight irritation-related effects reported by (Ernstgård et al., 2002) for 2 h inhalation of 50 ppm m-xylene are not considered as relevant for DNEL-setting, since they rely on subjective reporting while objective parameters (such as blinking rate) failed to demonstrate an adverse effect. Other available studies on irritation do not allow for the determination of a clear threshold/non-irritating air concentration.

In summary, a DNEL for single acute exposure via inhalation should be derived from the NOAEC for neurobehavioural effects of 68 ppm established in the study by (Olson et al., 1985). As the data were obtained from humans, no assessment factor for interspecies variability needs to be assigned. However, an intraspecies variability AF of 5 for workers or 10 for consumers must be set. In addition and in line with the IR/CSA guidance R.8,

where human single exposure duration is expected to be longer or shorter than the 4-h exposure on which the PoD of 68 ppm was based, this PoD needs to be adjusted accordingly using modified Haber's law ( $C^n \times t = const.$ , where n = 1 for extrapolation to longer durations and n = 3 for extrapolation to shorter durations), based on the observation that it may take several hours after the start of exposure until blood and brain levels reach their maximum values on the same day cf. e.g. (Gagnaire et al., 2007; Kaneko et al., 1995). For example, in order to derive an acute 8 h DNEL for consumers from the PoD of 68 ppm, an overall AF of 20 (AF 2 for daily exposure duration, AF 10 for intraspecies variability) has to be applied (resulting in a DNEL of 3.4 ppm or ca. 15 mg/m<sup>3</sup>).

#### 7.9.11.2. DNEL for acute dermal exposure

As reliable dermal toxicity data are lacking, dermal risk characterisation should be performed via route-to-route extrapolation from data obtained from the inhalation route.

#### 7.9.11.3. DNEL for chronic inhalation

#### 7.9.11.3.1. Calculation for workers

The eMSCA derived the DNEL (worker, inhalation, long-term, systemic) according to the specifications given in the REACH guidance chapter R.8 (ECHA, 2012).

The eMSCA consider neurotoxicity to be the most critical toxicological endpoint of xylene isomers. In both, human and rats, similar effects on the central nervous system (CNS) were observed.

The eMSCA derived the DNEL on the basis of the study of (Korsak et al., 1994). For the DNEL calculation only the rotarod studies on rats were taken into consideration. In this study the duration of xylene exposure was 90 days. Rats were exposed to doses of 50 ppm (221 mg xylene/m<sup>3</sup>) and 100 ppm (442 mg xylene/m<sup>3</sup>) m-xylene and the effects on the motor coordination were studied after 1, 2 and 3 months of exposure. After 1 month of exposure the failure rate concerning a motor coordination disturbance in the respective dose groups reached a level which did not change until the end of the study. Failure rates in the 50 ppm and 100 ppm dose groups were ca. 8 and 35%. In both (Korsak et al., 1994) and the report of the German Committee on Indoor Guide Values (Ausschuss für Innenraumluftwerte, 2015) the failure rate in the 50 ppm as the LOAEL and used it as a starting point (Point of Departure, PoD) for the DNEL derivation. By using standard default factors (6/8 h and 6.7/10 m<sup>3</sup>) the value was adjusted to the situation at the workplace resulting in a corrected PoD of 25 ppm.

For the following calculation of the DNEL the appropriate assessment factors had to be selected. For this purpose, two acute inhalation studies on rats and humans (Korsak et al., 1993; Olson et al., 1985) were analysed additionally. In (Korsak et al., 1993) also rotarod tests were used to study the effect of m-xylene exposure on the motor coordination in rats. The concentration of 1000 ppm (4400 mg/m<sup>3</sup>) was observed as a LOAEL. Using the LOAEC/NOAEC relation found in the subchronic study (Korsak et al., 1994), the concentration of 500 ppm (2210 mg/m<sup>3</sup>) was set as a NOAEL herein.

In (Olson et al., 1985) the NOAEL was determined at a concentration of 70 ppm (310 mg/m<sup>3</sup>). At this dose group, no effects on reaction time or short-term memory of the test persons were observed after a 4-h exposure to m-xylene. At a concentration of 100 ppm (440 mg/m<sup>3</sup>) an adverse effect on the reaction time were noticed. Hence, the concentration of 70 ppm was set as the NOAEL and 100 ppm as the LOAEL.

Consequently, the DNEL (worker, inhalation, long-term, systemic) was derived by the eMSCA by modifying the PoD of 25 ppm by applying the assessment factors for residual interspecies variability of 2.5 and for intraspecies variability of 5 (25 ppm/2.5/5), resulting in a DNEL of 2 ppm (8.8 mg/m<sup>3</sup>). The application of an assessment factor for the conversion of LOAEL to NOAEL was waived due to the fact that the observed effects at this LOAEL

were significant but minimal. A detailed overview on the derivations of the long-term DNEL as conducted by the eMSCA is presented in Table 30

#### Table 30

|                                                |                                                                                                 | TION OF THE DNEL (WORKER, INHALATION,<br>IE AS AN EXAMPLE CONDUCTED BY THE eMSCA.                                                                                                                                                                                                                 |
|------------------------------------------------|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Description<br>(AF= Assessment<br>factor)      | Value                                                                                           | Remark                                                                                                                                                                                                                                                                                            |
| Relevant dose descriptor                       | 50 ppm<br>(221 mg/m <sup>3</sup> )<br>= LOAEL                                                   | The NOAEL results from a subchronic (90 days) inhalation toxicity study in Wistar rats (Korsak et al., 1994). At the lowest dose tested (i. e. at 50 ppm) a minimal but significant decrease in motor coordination (-8 % compared to controls) was observed. This concentration was set as LOAEL. |
| Modification of the starting point             | (6 h / 8 h)*<br>(6.7 m <sup>3</sup> / 10<br>m <sup>3</sup> )<br>↓<br>Overall factor<br>= 0.5025 | Due to different exposure conditions in the animal<br>experiment and at the workplace both time scaling<br>and a modification due to different respiratory<br>volumes have to be applied according to the REACH<br>guidance R.8.                                                                  |
| Modified dose-descriptor                       | 50 ppm * 0.502                                                                                  | 25 = <b>25 ppm</b>                                                                                                                                                                                                                                                                                |
| AF for<br>interspecies differences             | 2.5                                                                                             | However, a default assessment factor for remaining differences is applied according to the REACH guidance R.8.                                                                                                                                                                                    |
| AF for<br>intraspecies differences             | 5                                                                                               | The default factor for workers is applied according to<br>the REACH guidance R.8 because no substance-<br>specific information is available for an adjustment.                                                                                                                                    |
| AF for<br>differences in exposure<br>duration  | 1                                                                                               | No assessment factor is applied.                                                                                                                                                                                                                                                                  |
| AF related to<br>dose response<br>relationship | -                                                                                               | No assessment factor is applied. The application of an<br>assessment factor for the conversion of LOAEL to<br>NOAEL was waived due to the fact that the observed<br>effects at this LOAEL were significant but minimal.                                                                           |
| DNEL                                           | 25 ppm/2.5/5 =                                                                                  | = 2 ppm (8.8 mg/ m <sup>3</sup> )                                                                                                                                                                                                                                                                 |

The DNEL calculated by the eMSCA is lower than the values given by the registrants.

The Registrants propose to use the IOELV (8 hr time-weighted average (TWA)) of 50 ppm (221 mg/m<sup>3</sup>) and the IOELV (short-time exposure limit (STEL)) of 100 ppm (442 mg/m<sup>3</sup>) as DNELs. These limit values were recommended by SCOEL in 1992 for both the xylene isomers and the mixture and are based on mild irritation of eye and upper respiratory tract and CNS effects in rats and humans (Carpenter et al., 1975; Hastings et al., 1984). According to appendix R.8-13 of ECHA guidance IOELVs can be used for the derivation of DNELs or as a DNEL itself:

"When an EU IOEL exists the registrant may, under conditions as described below, use the IOEL in place of developing a DNEL. But it must be noted that this approach is only applicable as long as there are no newer relevant data available. R.8-13 of ECHA guidance: a registrant is allowed to use an IOEL as a DNEL..., unless new scientific information...does not support the use of the IOEL for this purpose. The registrant may wish to provide details

Substance Evaluation Conclusion document EC No 203-396-5, 202-422-2, 203-576-3

of the new scientific information to DG EMPL who will take this into consideration as part of the normal procedures for reviewing IOELs."

#### 7.9.11.3.2. Calculation for consumers

Neurobehavioural deficits were observed in rats after subacute and subchronic exposure to  $\geq$  50 ppm xylene isomers. The most sensitive endpoint in this regard was found in (Korsak et al., 1994), where a LOAEC of 50 ppm was determined for rats who displayed a decreased latency in the paw-lick response at the end of a 13 wk, 6 h/d, 5 d/wk exposure. From the available data on toxicokinetics it is expected that steady state blood concentrations will have been achieved already after three months of exposure and, as the neurobehavioural effects are perceived as being primarily concentration-dependent in nature, the eMSCA considers that there is no need for setting an extra assessement factor for subchronic-to-chronic extrapolation.

In summary, a 24 h/d chronic inhalation DNEL for the general population can be obtained from the PoD by applying a factor of 24/6 to correct from 6 h/d exposure in the animal experiment to 24 h/d human exposure and another factor of 7/5 to account for everyday exposure, by adding an AF of 3 because the PoD is a LOAEC, and by applying inter /intraspecies factors of 2.5/10. As a result, the PoD of 50 ppm has to be divided by an overall AF of 420, which results in a DNEL value of 0.12 ppm. For differing daily exposure durations, modified Haber's law (see above) has to be applied.

| CRITICAL DNELS/                                                                                                             | DMELS DERIV                                                    | ED BY OTHER                                              | S                                                            |                                      |                                                 |  |
|-----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------|--------------------------------------|-------------------------------------------------|--|
| Type of health-<br>based guidance<br>value                                                                                  | Type of effect                                                 | Critical<br>study(ies)                                   | Corrected<br>dose<br>descriptor(s)<br>(e.g. NOAEL,<br>NOAEC) | DNEL/ DMEL                           | Justification/<br>Remarks                       |  |
|                                                                                                                             |                                                                | Inhalat                                                  | tion                                                         |                                      |                                                 |  |
| Acute/Subacute                                                                                                              |                                                                |                                                          |                                                              |                                      |                                                 |  |
| MRL ≤ 14 d                                                                                                                  |                                                                | (Ernstgård et<br>al., 2002)                              |                                                              | 2 ppm                                | (ATSDR, 2007)                                   |  |
| DNEL (workers),<br>acute                                                                                                    |                                                                |                                                          |                                                              | 100 ppm                              | Lead registrant                                 |  |
| DNEL (general<br>population), acute                                                                                         | Neurotoxicity,<br>irritation                                   | IOELV for<br>workers                                     | Not given                                                    | 260 mg/m <sup>3</sup><br>60 ppm      | Lead registrant                                 |  |
|                                                                                                                             |                                                                | Subchro                                                  | onic                                                         | •                                    |                                                 |  |
| MRL 15 d – 1 yr                                                                                                             |                                                                |                                                          |                                                              | 0.6 ppm                              | (ATSDR, 2007)                                   |  |
|                                                                                                                             | I                                                              | Chronic/Lo                                               | ng-term                                                      |                                      |                                                 |  |
| MRL > 1 yr                                                                                                                  |                                                                |                                                          |                                                              | 0.05 ppm                             | (ATSDR, 2007)                                   |  |
| DNEL (workers),<br>long-term                                                                                                | Mild irritation<br>of eye and<br>upper<br>respiratory<br>tract | (Carpenter et<br>al., 1975;<br>Hastings et<br>al., 1984) | 50 ppm<br>(221 mg/m³)                                        | 50 ppm<br>(221 mg/m <sup>3</sup> )   | Lead registrant                                 |  |
| Innenraumrichtwert I<br>(Guidance value for<br>indoor air, with no<br>risk of adverse effects<br>upon lifetime<br>exposure) | Neurotoxicity                                                  | (Korsak et al.,<br>1992; Korsak<br>et al., 1994)         | 100 ppm<br>(LOAEC)                                           | 0.02 ppm<br>(0.8 mg/m <sup>3</sup> ) | (Ausschuss für<br>Innenraumluftw<br>erte, 2015) |  |

| CRITICAL DNELS/                                                                                                            | DMELS DERIVI                 | ED BY OTHER                                      | 5                                                            |                                      |                                                 |  |  |
|----------------------------------------------------------------------------------------------------------------------------|------------------------------|--------------------------------------------------|--------------------------------------------------------------|--------------------------------------|-------------------------------------------------|--|--|
| Type of health-<br>based guidance<br>value                                                                                 | Type of effect               | Critical<br>study(ies)                           | Corrected<br>dose<br>descriptor(s)<br>(e.g. NOAEL,<br>NOAEC) | DNEL/ DMEL                           | Justification/<br>Remarks                       |  |  |
| Innenraumrichtwert<br>II (Guidance value for<br>indoor air, upon<br>exceedance of which<br>risk mitigation is<br>required) | Neurotoxicity                | (Korsak et al.,<br>1992; Korsak<br>et al., 1994) | 100 ppm<br>(LOAEC)                                           | 0.18 ppm<br>(0.1 mg/m <sup>3</sup> ) | (Ausschuss für<br>Innenraumluftw<br>erte, 2015) |  |  |
| DNEL (general<br>population), long-<br>term                                                                                | Neurotoxicity,<br>irritation | IOELV for<br>workers                             | Not given                                                    | 65.3 mg/m <sup>3</sup><br>15 ppm     | Lead registrant                                 |  |  |
|                                                                                                                            |                              | Derm                                             | al                                                           |                                      |                                                 |  |  |
| DNEL (workers),<br>long-term                                                                                               | Neurotoxicity                | IOELV for<br>workers                             | Not given                                                    | 212 mg/kg<br>bw/d                    | Lead registrant                                 |  |  |
| DNEL (general<br>population), long-<br>term                                                                                | Neurotoxicity                |                                                  |                                                              | 125 mg/kg<br>bw/d                    | Lead registrant                                 |  |  |
|                                                                                                                            | Oral                         |                                                  |                                                              |                                      |                                                 |  |  |
| General population                                                                                                         | Repeated dose toxicity       |                                                  |                                                              | 12.5 mg/kg<br>bw/d                   | Lead registrant                                 |  |  |

#### Table 32

| CRITICAL DNE           | LS/DMELS          |                                                        |                                                           |                                                   |                                                                                                                      |
|------------------------|-------------------|--------------------------------------------------------|-----------------------------------------------------------|---------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| Endpoint of<br>concern | Type of<br>effect | Critical<br>study(ies)                                 | Corrected dose<br>descriptor(s)<br>(e.g. NOAEL,<br>NOAEC) | DNEL*                                             | Justification/<br>Remarks                                                                                            |
|                        |                   | Consumers/                                             | General Populatio                                         | on                                                |                                                                                                                      |
| Neurobehaviour         | Reaction time     | (Gamberale et<br>al., 1978)<br>(Olson et al.,<br>1985) | NOAEC <sub>human</sub><br>167 ppm<br>171 ppm              | Acute, 0.25 h**<br>17 ppm<br>70 mg/m <sup>3</sup> | Adjustment to 0.25<br>h daily exposure via<br>modified Haber's<br>law ( $C^3 x t =$<br>const.), overall AF =<br>10   |
| Neurobehaviour         | Reaction time     | (Gamberale et<br>al., 1978)<br>(Olson et al.,<br>1985) | NOAEC <sub>human</sub><br>105 ppm<br>108 ppm              | Acute, 1 h<br>11 ppm<br>50 mg/m <sup>3</sup>      | Adjustment to 1 h<br>daily exposure via<br>modified Haber's<br>law ( $C^3 \times t =$<br>const.), overall AF =<br>10 |
| Neurobehaviour         | Reaction time     | (Olson et al.,<br>1985)                                | NOAEC <sub>human</sub><br>86 ppm                          | Acute, 2 h<br>9 ppm<br>40 mg/m <sup>3</sup>       | Adjustment to 2 h<br>daily exposure via<br>modified Haber's<br>law ( $C^3 \times t =$<br>const.), overall AF =<br>10 |
| Neurobehaviour         | Reaction time     | (Olson et al.,<br>1985)                                | NOAEC <sub>human</sub><br>68 ppm                          | Acute, 4 h<br>7 ppm<br>30 mg/m <sup>3</sup>       | Overall AF = 10                                                                                                      |

| CRITICAL DNE                  | LS/DMELS                                             |                          |                                                           |                                                         |                                                                                                                                                 |
|-------------------------------|------------------------------------------------------|--------------------------|-----------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| Endpoint of<br>concern        | Type of<br>effect                                    | Critical<br>study(ies)   | Corrected dose<br>descriptor(s)<br>(e.g. NOAEL,<br>NOAEC) | DNEL*                                                   | Justification/<br>Remarks                                                                                                                       |
| Neurobehaviour                | Reaction time                                        | (Olson et al.,<br>1985)  | NOAEC <sub>human</sub><br>34 ppm                          | Acute, 8 h<br>3 ppm<br>15 mg/m <sup>3</sup>             | Adjustment to 8 h<br>daily exposure via<br>modified Haber's<br>law (C x t = const.),<br>overall AF = $10$                                       |
| Neurobehavioura<br>l toxicity | Hypersensi-<br>tivity to pain<br>(hot plate<br>test) | (Korsak et al.,<br>1994) | LOAEC <sub>rat</sub><br>41 ppm                            | Chronic, 4 h/d<br>0.5 ppm<br>2 mg/m <sup>3</sup>        | Adjustment to 4 h<br>daily exposure via<br>modified Haber's<br>law ( $C^3 \times t = const.$ )<br>and to exposure 7<br>d/wk, overall AF =<br>75 |
| Neurobehavioura<br>l toxicity | Hypersensitiv<br>ity to pain<br>(hot plate<br>test)  | (Korsak et al.,<br>1994) | LOAEC <sub>rat</sub><br>9 ppm                             | Chronic,<br>24 h/d<br>0.12 ppm<br>0.5 mg/m <sup>3</sup> | Adjustment to 24 h<br>daily exposure via<br>modified Haber's<br>law (C x t = const.)<br>and to exposure 7<br>d/wk, overall AF =<br>75           |

\*Rounded to first significant figure if the first figure is 2-9, to two significant figures if the first is 1; \*\* Consistent with the result that would be derived from (Olson et al., 1985)

# **7.9.12.** Conclusions of the human health hazard assessment and related classification and labelling

#### 7.9.12.1. Read-across approach

Table 27 in section 7.9.10 above already provided an overview of the available toxicity data in the form of a matrix table. For building this database, the registrants to a large extent relied on read-across from individual xylene isomers to xylene mixtures and vice versa. Despite the fact that the justification/reporting of the read-across approach in the registration dossiers was found to be insufficient, the eMSCA considers that Table 28 shows qualitatively that the different isomers and ethylbenzene more or less elicit comparable effects in animals and humans over a variety of endpoints and therefore the read-across hypothesis appears to be plausible in principle. Most prominently, this seems to hold for the acute neurobehavioural effects, which provide the most sensitive starting points for acute toxicity risk assessment. Given the apparent plausibility of read-across, the eMSCA found that a request for an update of the read-across justification was outside the scope of SEv. An assessment of the read-across approach in terms of ECHA's Read-Across Assessment Framework (ECHA, 2017) can be found in Annex 1 (section 7.16).

#### 7.9.12.2. ADME

The following worst-case assumption should be used in line with the REACH guidance:

- 50% oral absorption should be used when converting an external oral dose to a systemically available one, while 100% should be used when converting a systemically available to an external oral dose.
- 60% absorption should be used when converting an external air concentration to a systemically dose following inhalation, while a value of 95% should be used when converting a systemic dose to an external air concentration.
- When judging the risk of dermal exposure based on systematic concentrations derived from oral or inhalation studies 43 mg/cm<sup>2</sup>/h can be considered as a reasonable worstcase estimate of dermal absorption flux.

Xylenes are widely distributed and intermediately stored to some degree in fat tissue (e.g. perirenal fat). With respect to metabolism, phase I reactions include oxidation to hydroxy-, carbonyl-, and ultimately oxocarbonyl derivatives, followed by phase II conjugations, most prominently with glycine to form the corresponding methylhippuric acids. In isomer mixtures, isomers and ethylbenzene appear to compete for the same CYP enzymes and conjugation partners. The involvement of ADH suggests possible mixture effects with ethanol and other solvents. The major fraction of absorbed xylene isomers is excreted as methylhippuric acids (ethylbenzene: mandelic acid) while a smaller fraction is exhaled unchanged. Some studies show the presence of corresponding dimethylphenols, some postulate route-specific differences, but the data base seems to be too weak to support this. Conjugation and excretion are fastest for p-xylene and ethylbenzene, followed by mxylene and o-xylene. Competitive metabolism might lead to difficulties in reliably predicting blood levels from single isomers vs. mixed isomers. Potential sex-specific differences are not covered by the human database. Similar results as for the three xylene isomers have been reported for ethylbenzene.

#### 7.9.12.3. Acute toxicity including irritation/corrosion

Experimental data are available for all isomers for the inhalation route, for m-xylene, ethylbenzene and mixed xylenes also for the oral and dermal routes of administration. Non-lethal toxicity of xylene isomers or mixed xylene can be observed in the form of acute neurobehavioural effects. In animals, inter alia depression of flash-evoked potentials (FEP), as well as decrease in hot plate, rotarod and maze test performance were observed. In humans learning performance, reaction time and/or motor coordination can be affected already after single acute exposure. A NOAEC of 68 ppm is taken forward to risk assessment as the most relevant PoD for acute effects after single inhalation exposure in humans. While the available data base supports CLH as Acute Tox. 4 for the inhalation route as well as no classification for acute oral toxicity, the rationale behind the existing CLH for xylenes (isomers and mixed) as Acute Tox. 4 for the dermal route is not clear. Both the data in animals and humans suggest the need for classification/labelling for STOT SE 3, H336 ("May cause drowsiness or dizziness").

Based on the available data, individual xylene isomers, ethylbenzene and mixed xylenes are considered unlikely to possess corrosive properties. According to CLP Annex VI, all xylene isomers are classified as Skin Irrit. 2, therefore no further action is required despite the fact that the available data mostly consist of very old studies with insufficient reporting and/or scoring systems not directly compatible with the GHS/CLP system. With respect to eve irritation, the available studies are considered sufficient to exclude a potential for severe eye damage (CLP Cat. 1). In the view of the eMSCA, they also do not give rise to a sufficiently strong concern justifying initiation of CLH for eye irritation (CLP Cat. 2). For respiratory tract irritation, however, the available data in animals indicate a possible need for classification as STOT SE/H335. Studies in humans have shown that respiratory irritation (in the form of sensory irritation) can be observed in humans exposed to xylenes, too. However, most of these findings were based on subjective reporting and could not be objectivated by measurements. It is noted that a number of notifiers to the C&L Inventory have chosen to self-classify the xylene isomers in this way.

#### 7.9.12.4. Sensitisation

With remaining uncertainties acknowledged, the eMSCA considers the totality of information sufficient to conclude that xylenes most likely are not skin sensitisers. In this regard the respective initial concern has been clarified. No data on respiratory sensitisation are available for the xylenes. Given that all known respiratory sensitisers are also skin sensitisers (which xylenes are not considered to be) and that no reports on respiratory hypersensitivity as a consequence of exposure to xylenes have been found, the eMSCA concludes that there is currently no specific concern that xylenes could be respiratory sensitisers.

#### 7.9.12.5. Repeated dose toxicity

Repeated dose studies are available for the oral and inhalation route. No studies with repeated dermal administration were identified in the registration dossiers or the published literature. Studies along the oral route mainly demonstrated effects on organ and body weight as well as - at very high doses not relevant for classification and labelling - clinical signs of severe toxicity (prostration, shallow breathing, lethality). However, under the scope of this SEv, the eMSCA considers the oral route less relevant and risk assessment was therefore focused on exposure via inhalation. Neurofunctional/neurobehavioural impairment has been identified as the most sensitive endpoint for risk assessment. In animals, repeated inhalation of xylenes was found to impact on learning, reaction time, motor coordination, and increased sensitivity to pain expressed as a decreased latency of the paw-lick response in rats when placed on a hot metal plate. While the relevance of these effects for humans in principle has been demonstrated in acute studies, no adequate human studies using repeated exposure are available for these endpoints. The LOAEC of 50 ppm for hot plate test behaviour at the end of a 13-wk (5 d/wk, 6 h/d) inhalation experiment with m-xylene was taken forward as the starting point for risk characterisation. This effect likely does not represent irreversible neurological damage and therefore does not have to be considered for STOT RE classification. With respect to STOT RE classification, however, one of the initial concerns of the eMSCA under SEv was ototoxicity, which was demonstrated in rats for p-xylene at  $\geq$  800 ppm (13 wk, 5 d/wk, 6 h/d) or 1800 ppm (3 wk, 5 d/wk, 6 h/d), while 1800 ppm, the highest concentration tested in both experiments and well above the classification limit for STOT RE 2, was a NOAEC for the o- and misomers. The relevance for humans has been shown in studies which reported significantly lower hearing ability in exposed vs. non-exposed workers, but cannot be used for quantitative risk assessment. As a consequence of these findings, no classification/labelling for STOT RE is indicated for any of the single xylene isomers.

#### 7.9.12.6. Genotoxicity

The eMSCA finds that the available data do not point at a genotoxic concern for mixed xylenes or any of the individual xylene isomers.

#### 7.9.12.7. Carcinogenicity

In 1986 the US National Toxicity Program has performed two oral combined chronic toxicity and carcinogenicity studies in rats and mice, in which no increased incidence of tumours in treated groups up to the highest dose of 500 (rats) or 1000 (mice) mg/kg bw/d was observed. In conjunction with the synopsis of the available data base on genotoxicity, the eMSCA finds that at this point in time, there is no concern about a carcinogenic potential of the xylene isomers.

#### 7.9.12.8. Toxicity to reproduction

In several studies on developmental toxicity, xylenes caused skeletal variations as well as effects on foetal body weight and foetal neurobehaviour. While maternal toxicity is not always explicitly reported in sufficient detail, it can be assumed that all of the adverse

Substance Evaluation Conclusion document EC No 203-396-5, 202-422-2, 203-576-3

effects observed only occurred at dose levels much higher than those required to trigger neurotoxicity in maternal animals. The overall NOAEC/LOAEC for foetal weight effects was 100/340 ppm. Based on these observations and the nature of the effects, there are currently no indications that classification with respect to developmental effects is required for xylenes.

Following conclusion of the substance evaluation but prior to publication of the report, new information from pre-natal developmental studies in rabbits were provided in the registration as a follow-up of a dossier evaluation by ECHA.

This new information was not assessed in detail by the eMSCA and is not reflected in this report. However, ECHA has, in April 2021, formally concluded the compliance check and confirmed that the PNDT study submitted by the registrants is complying with the requested information.

A one-generation study with xylene in rats showed no effects on fertility-related parameters after exposure to concentrations up to 500 ppm. However, this study is not equivalent to a two- or extended one-generation study as required by REACH at this tonnage level. The registrant(s) have waived this requirement by performing read-across to a published two-generation study in rats performed with ethylbenzene, which likewise did not show relevant effects on fertility up to 500 ppm. In summary, potential data gaps for developmental toxicity (second species) and fertility (read-across to a two-generation study with ethylbenzene) have been identified, but no specific concern could be established that would justify requesting further information under SEv in line with the risk paradigm of REACH Art. 50 (4).

#### 7.9.12.9. Aspiration hazard

The kinematic viscosity of all xylene isomers is reported to lie in the range of 0.58-0.76 mm<sup>2</sup>/s at 25 °C which suggests that the criterion for classification given in the CLP regulation ( $\leq 22.5 \text{ mm}^2/\text{s}$  at 40 °C) is clearly met. The eMSCA therefore concludes that all xylene isomers as well as mixed xylenes should be classified/labelled as Asp. Tox 1 (H304: "May be fatal if swallowed and enters airways)".

#### 7.9.12.10. Physico-chemical properties

o-Xylene, m-xylene and p-xylene are classified as flammable liquids. Therefore, a risk assessment of the likelihood and the severity of an event occurring due to physicochemical hazard properties is needed. Flashpoint, explosion limits, vapour pressure, critical chemical reactions are important factors to evaluate the risk. The severity of an event will be also triggered by the substance amount of use per task/in the process and the process condition like temperature, pressure, concentration, ventilation and duration.

## 7.10. Assessment of endocrine disrupting (ED) properties

There was no initial concern for ED properties at the beginning of this SEv. No indications of a potential of xylene isomers to cause ED-related effects have been identified in the course of the evaluation of the toxicological database.

#### 7.10.1. Endocrine disruption – Environment

Not assessed during this evaluation.

#### 7.10.2. Endocrine disruption - Human health

There was no initial concern for ED properties at the beginning of this SEv. No indications of a potential of xylene isomers to cause ED-related effects have been identified in the course of the evaluation of the toxicological database.

# **7.10.3.** Conclusion on endocrine disrupting properties (combined/separate)

The eMSCA agrees with the US Agency for Toxic Substances and Disease Registry in concluding that "no *in vivo* or *in vitro* studies were located regarding endocrine disruption in human and /or animals after exposure to mixed xylenes or individual isomers of xylene. Evidence for endocrine effects has not been seen in studies on reproductive, developmental, or chronic toxicities of xylenes" (ATSDR, 2007).

### 7.11. PBT and VPVB assessment

PBT and vPvB assessment were outside the scope of this SEv.

### 7.12. Exposure assessment

#### 7.12.1. Human health

#### 7.12.1.1. Workers

The exposure assessment for workers includes modelled data from the CSRs (as provided by the registrants) that were calculated with ECETOC TRA v3. The exposure scenarios taken into account for this substance evaluation report are taken from the CSRs of the lead registrant (version October 2015). In addition, measurement data from Germany as published by the Institute for Occupational Safety and Health of the German Social Accident Insurance (IFA) have been evaluated.

#### 7.12.1.1.1. Scope and type of exposure

The CSRs from the lead registrant (version October 2015) includes 17 worker exposure scenarios for o- and p- xylene. Eleven scenarios cover industrial applications und six scenarios cover xylene applications for professional worker. An overview of the exposure scenarios according to the lead registrant is provided for each of the xylene isomers in a confidential annex to the evaluation report.

The vapour pressures of the xylene isomers at 25 °C are 882 Pa for o-xylene, 1052 Pa for m-xylene and 1167 Pa for p-xylene. As xylenes are readily volatile liquids and because they are also used in applications with potentially high exposures (such as solvents and/or cleaning agents), exposure via dermal and inhalation route are likely to occur. However, as the focus of the exposure assessment is based on measurement data, the modelled data for dermal exposure from the CSRs have not been further taken into account. This was not considered necessary because the risk assessments based solely on the measured inhalation data already shows RCRs well above 1 and it is therefore clearly demonstrated that risks are not adequately controlled for a wide range of sectors and uses.

# **7.12.1.1.2.** Occupational exposure data from the German Social Accident Insurance (IFA)

Measured workplace exposure data from Germany have been evaluated in a study by the Institute for Occupational Safety and Health of the German Social Accident Insurance (IFA, 2016). The data have been gathered from 2005 to August 2016 and were documented in accordance to the measurement system of the German Social Accident Insurance Institutions for exposure assessment (MGU) (Gabriel et al., 2010). Overall, a total of 8449 measurement data for xylene (all isomers, CAS number 1330-20-7) have been evaluated according to industry groups as well as work area groups.

#### Table 33

provides an overview of the statistical evaluations according to industry groups and work areas. In accordance with REACH Guidance on Information Requirements and Chemical

Safety Assessment Chapter R.14: Occupational exposure assessment, the 90<sup>th</sup> percentile value (representing the reasonable worst case exposure level of the distribution of the measurement dataset), is used as the exposure value for the risk characterisation.

#### Table 33

| ndustry<br>roup                                                                 | Work area group                                                                                                                           | Exposure<br>duration                                                                                                           | Type of<br>measure-<br>ment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Number of<br>measure-<br>ments                                                                       | Concentration<br>[mg/m³]<br>90%-value                                                                              |  |
|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--|
|                                                                                 |                                                                                                                                           |                                                                                                                                | personal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 200                                                                                                  | 160                                                                                                                |  |
| _                                                                               |                                                                                                                                           | ≥ 6 h                                                                                                                          | stationary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 53                                                                                                   | 49.8                                                                                                               |  |
| ırnish                                                                          | Airless spraying                                                                                                                          | < 6 h                                                                                                                          | personal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 36                                                                                                   | 287.6                                                                                                              |  |
| l va                                                                            |                                                                                                                                           |                                                                                                                                | personal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 746                                                                                                  | 44.4                                                                                                               |  |
| uic                                                                             |                                                                                                                                           | ≥ 6 h                                                                                                                          | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 133                                                                                                  | 20.8                                                                                                               |  |
| nd liqu                                                                         | Spraying with pressurised air                                                                                                             |                                                                                                                                | stationary 31 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                      |                                                                                                                    |  |
| pu                                                                              |                                                                                                                                           | < 6 h                                                                                                                          | · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 31                                                                                                   | 24.6                                                                                                               |  |
| а<br>С                                                                          |                                                                                                                                           |                                                                                                                                | personal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 129                                                                                                  | 37.1                                                                                                               |  |
| hin                                                                             | Spraying unspecified                                                                                                                      | ≥ 6 h                                                                                                                          | · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 30                                                                                                   | 21                                                                                                                 |  |
| nisl<br>J                                                                       | Spraying unspecified                                                                                                                      | < 6 h                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 22                                                                                                   | 57                                                                                                                 |  |
| ıg, varn<br>coating                                                             |                                                                                                                                           |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 48                                                                                                   | 79.6                                                                                                               |  |
| a, v<br>oat                                                                     | Manual surface coating                                                                                                                    | ≥ 6 h                                                                                                                          | · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 30                                                                                                   | 62                                                                                                                 |  |
| ů, ů                                                                            |                                                                                                                                           | < 6 h                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                      | 152                                                                                                                |  |
| int                                                                             |                                                                                                                                           | -                                                                                                                              | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                      | 96.2                                                                                                               |  |
| Surface coating in painting, varnishing and liquid varnish<br>coating           | Machine surface coating                                                                                                                   | ≥ 6 h                                                                                                                          | · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                      | 32.8                                                                                                               |  |
|                                                                                 | Dipping, powder coating and other unspecified surface coating processes                                                                   | ≥ 6 h                                                                                                                          | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                      | 49                                                                                                                 |  |
|                                                                                 |                                                                                                                                           |                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                      | 80                                                                                                                 |  |
|                                                                                 |                                                                                                                                           | < 6 h                                                                                                                          | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                      | 273                                                                                                                |  |
|                                                                                 |                                                                                                                                           |                                                                                                                                | · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                    | 25                                                                                                                 |  |
|                                                                                 | Coating preparation, mixing and                                                                                                           | ≥ 6 h                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                      | 22.6                                                                                                               |  |
|                                                                                 |                                                                                                                                           |                                                                                                                                | · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                    | 34                                                                                                                 |  |
| S                                                                               | drying                                                                                                                                    | < 6 h                                                                                                                          | personal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 17                                                                                                   | 33                                                                                                                 |  |
|                                                                                 |                                                                                                                                           |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                      |                                                                                                                    |  |
|                                                                                 | Airless spraving                                                                                                                          | ≥ 6 h                                                                                                                          | personal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 108                                                                                                  | 111.4                                                                                                              |  |
|                                                                                 | Airless spraying                                                                                                                          |                                                                                                                                | stationary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 59                                                                                                   | 106.2                                                                                                              |  |
|                                                                                 | Airless spraying                                                                                                                          | ≥ 6 h<br>< 6 h                                                                                                                 | stationary<br>personal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 59<br>10                                                                                             | 106.2<br>27                                                                                                        |  |
| ops                                                                             | Airless spraying                                                                                                                          |                                                                                                                                | personal         746           stationary         133           personal         313           stationary         31           personal         129           stationary         30           personal         129           stationary         30           personal         22           personal         22           personal         48           stationary         30           personal         48           stationary         30           personal         44           personal         28           stationary         28           stationary         95           personal         142           stationary         95           personal         13           stationary         18           personal         17           personal         10           personal         108           personal         10           personal         297           stationary         138           personal         80           stationary         22           personal         86 </td <td>106.2<br/>27<br/>54</td> | 106.2<br>27<br>54                                                                                    |                                                                                                                    |  |
| mecnamical<br>shops                                                             | Airless spraying<br>Spraying with pressurised air                                                                                         | < 6 h                                                                                                                          | stationary<br>personal<br>personal<br>stationary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 59<br>10<br>297<br>138                                                                               | 106.2<br>27<br>54<br>31                                                                                            |  |
| ig, mecnanical<br>orkshops                                                      |                                                                                                                                           | < 6 h                                                                                                                          | stationary<br>personal<br>personal<br>stationary<br>personal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 59<br>10<br>297<br>138<br>80                                                                         | 106.2<br>27<br>54<br>31<br>97                                                                                      |  |
| king, mecnanical<br>. workshops                                                 |                                                                                                                                           | < 6 h<br>≥ 6 h                                                                                                                 | stationary<br>personal<br>personal<br>stationary<br>personal<br>stationary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 59<br>10<br>297<br>138<br>80<br>22                                                                   | 106.2<br>27<br>54<br>31<br>97<br>36.6                                                                              |  |
| vorking, mecnanical<br>aair workshops                                           | Spraying with pressurised air                                                                                                             | < 6 h<br>≥ 6 h                                                                                                                 | stationary<br>personal<br>personal<br>stationary<br>personal<br>stationary<br>personal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 59<br>10<br>297<br>138<br>80<br>22<br>86                                                             | 106.2<br>27<br>54<br>31<br>97<br>36.6<br>65.2                                                                      |  |
| aworking, mecnanical<br>repair workshops                                        |                                                                                                                                           | < 6 h<br>≥ 6 h<br>< 6 h<br>≥ 6 h                                                                                               | stationary<br>personal<br>personal<br>stationary<br>personal<br>stationary<br>personal<br>stationary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 59<br>10<br>297<br>138<br>80<br>22<br>86<br>35                                                       | 106.2<br>27<br>54<br>31<br>97<br>36.6<br>65.2<br>147                                                               |  |
| netalworking, mechanical<br>nd repair workshops                                 | Spraying with pressurised air                                                                                                             | < 6 h<br>≥ 6 h<br>< 6 h                                                                                                        | stationary<br>personal<br>personal<br>stationary<br>personal<br>stationary<br>personal<br>stationary<br>personal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 59<br>10<br>297<br>138<br>80<br>22<br>86<br>35<br>11                                                 | 106.2<br>27<br>54<br>31<br>97<br>36.6<br>65.2<br>147<br>30.6                                                       |  |
| n metalworking, mechanical<br>and repair workshops                              | Spraying with pressurised air<br>Spraying unspecified                                                                                     | < 6 h<br>≥ 6 h<br>< 6 h<br>≥ 6 h                                                                                               | stationary<br>personal<br>stationary<br>personal<br>stationary<br>personal<br>stationary<br>personal<br>personal<br>personal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 59<br>10<br>297<br>138<br>80<br>22<br>86<br>35<br>11<br>76                                           | 106.2<br>27<br>54<br>31<br>97<br>36.6<br>65.2<br>147<br>30.6<br>100                                                |  |
| g in metalworking, mechanical<br>ing and repair workshops                       | Spraying with pressurised air                                                                                                             | < 6 h<br>≥ 6 h<br>< 6 h<br>≥ 6 h<br>< 6 h<br>≥ 6 h<br>≥ 6 h                                                                    | stationary<br>personal<br>personal<br>stationary<br>personal<br>stationary<br>personal<br>stationary<br>personal<br>personal<br>stationary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 59<br>10<br>297<br>138<br>80<br>22<br>86<br>35<br>11<br>76<br>54                                     | 106.2<br>27<br>54<br>31<br>97<br>36.6<br>65.2<br>147<br>30.6<br>100<br>25                                          |  |
| iting in metalworking, mechanical<br>eering and repair workshops                | Spraying with pressurised air<br>Spraying unspecified                                                                                     | < 6 h<br>≥ 6 h<br>< 6 h<br>≥ 6 h<br>< 6 h                                                                                      | stationary<br>personal<br>personal<br>stationary<br>personal<br>stationary<br>personal<br>stationary<br>personal<br>stationary<br>personal<br>personal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 59<br>10<br>297<br>138<br>80<br>22<br>86<br>35<br>11<br>76<br>54<br>16                               | 106.2<br>27<br>54<br>31<br>97<br>36.6<br>65.2<br>147<br>30.6<br>100<br>25<br>225.8                                 |  |
| coating in metalworking, mechanical<br>jineering and repair workshops           | Spraying with pressurised air<br>Spraying unspecified<br>Manual surface coating                                                           | < 6 h<br>≥ 6 h<br>< 6 h<br>≥ 6 h<br>< 6 h<br>≥ 6 h<br>≥ 6 h                                                                    | stationary<br>personal<br>stationary<br>personal<br>stationary<br>personal<br>stationary<br>personal<br>personal<br>stationary<br>personal<br>personal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 59<br>10<br>297<br>138<br>80<br>22<br>86<br>35<br>11<br>76<br>54<br>16<br>32                         | 106.2<br>27<br>54<br>31<br>97<br>36.6<br>65.2<br>147<br>30.6<br>100<br>25<br>225.8<br>63.4                         |  |
| ce coating in metalworking, mechanical<br>engineering and repair workshops      | Spraying with pressurised air<br>Spraying unspecified                                                                                     | < 6 h<br>≥ 6 h<br>< 6 h<br>≥ 6 h<br>< 6 h<br>≥ 6 h<br>≥ 6 h<br>< 6 h                                                           | stationary<br>personal<br>stationary<br>personal<br>stationary<br>personal<br>stationary<br>personal<br>personal<br>stationary<br>personal<br>stationary<br>personal<br>stationary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 59<br>10<br>297<br>138<br>80<br>22<br>86<br>35<br>11<br>76<br>54<br>16<br>32<br>32<br>32             | 106.2<br>27<br>54<br>31<br>97<br>36.6<br>65.2<br>147<br>30.6<br>100<br>25<br>225.8<br>63.4<br>26.4                 |  |
| race coating in metalworking, mechanical<br>engineering and repair workshops    | Spraying with pressurised air<br>Spraying unspecified<br>Manual surface coating<br>Machine surface coating                                | < 6 h<br>$\ge$ 6 h<br>< 6 h<br>$\ge$ 6 h<br>$\ge$ 6 h<br>$\ge$ 6 h<br>$\ge$ 6 h<br>$\ge$ 6 h<br>$\ge$ 6 h                      | stationary<br>personal<br>stationary<br>personal<br>stationary<br>personal<br>stationary<br>personal<br>personal<br>stationary<br>personal<br>stationary<br>personal<br>stationary<br>personal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 59<br>10<br>297<br>138<br>80<br>22<br>86<br>35<br>11<br>76<br>54<br>16<br>32<br>32<br>32<br>61       | 106.2<br>27<br>54<br>31<br>97<br>36.6<br>65.2<br>147<br>30.6<br>100<br>25<br>225.8<br>63.4<br>26.4<br>42.9         |  |
| surrace coating in metaiworking, mechanical<br>engineering and repair workshops | Spraying with pressurised air<br>Spraying unspecified<br>Manual surface coating<br>Machine surface coating<br>Dipping, powder coating and | < 6 h<br>$\geq$ 6 h<br>< 6 h<br>$\geq$ 6 h<br>$\leq$ 6 h<br>$\geq$ 6 h<br>$\geq$ 6 h<br>$\geq$ 6 h<br>$\geq$ 6 h<br>$\geq$ 6 h | stationary<br>personal<br>stationary<br>personal<br>stationary<br>personal<br>stationary<br>personal<br>personal<br>stationary<br>personal<br>stationary<br>personal<br>stationary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 59<br>10<br>297<br>138<br>80<br>22<br>86<br>35<br>11<br>76<br>54<br>16<br>32<br>32<br>32<br>61<br>78 | 106.2<br>27<br>54<br>31<br>97<br>36.6<br>65.2<br>147<br>30.6<br>100<br>25<br>225.8<br>63.4<br>26.4<br>42.9<br>36.4 |  |
| Surrace coating in metaiworking, mechanical<br>engineering and repair workshops | Spraying with pressurised air<br>Spraying unspecified<br>Manual surface coating<br>Machine surface coating                                | < 6 h<br>$\ge$ 6 h<br>< 6 h<br>$\ge$ 6 h<br>$\ge$ 6 h<br>$\ge$ 6 h<br>$\ge$ 6 h<br>$\ge$ 6 h<br>$\ge$ 6 h                      | stationary<br>personal<br>stationary<br>personal<br>stationary<br>personal<br>stationary<br>personal<br>personal<br>stationary<br>personal<br>stationary<br>personal<br>stationary<br>personal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 59<br>10<br>297<br>138<br>80<br>22<br>86<br>35<br>11<br>76<br>54<br>16<br>32<br>32<br>32<br>61       | 106.2<br>27<br>54<br>31<br>97<br>36.6<br>65.2<br>147<br>30.6<br>100<br>25<br>225.8<br>63.4<br>26.4<br>42.9         |  |

| ndustry<br>roup            | Work area group                                                                                                                                                                              | Exposure<br>duration | Type of<br>measure-<br>ment | Number of<br>measure-<br>ments | Concentration<br>[mg/m³]<br>90%-value |
|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------------------|--------------------------------|---------------------------------------|
|                            | (chemical/plastics/ rubber industry)                                                                                                                                                         |                      | stationary                  | 17                             | 40,2                                  |
|                            | Surface coating without paint                                                                                                                                                                | ≥ 6 h                | personal                    | 103                            | 43.7                                  |
|                            | spraying<br>(chemical/plastics/rubber                                                                                                                                                        | 2011                 | stationary                  | 70                             | 38.5                                  |
|                            | industry)                                                                                                                                                                                    | < 6 h                | personal                    | 11                             | 312.7                                 |
|                            | Paint spraying in wood industry<br>-                                                                                                                                                         | ≥6 h                 | personal                    | 95                             | 25.5                                  |
|                            |                                                                                                                                                                                              | 2011                 | stationary                  | 21                             | 22.5                                  |
|                            |                                                                                                                                                                                              | < 6 h                | personal                    | 11                             | 15.2                                  |
|                            | Surface coating without paint                                                                                                                                                                |                      | personal                    | 64                             | 20.6                                  |
|                            | spraying in wood industry                                                                                                                                                                    | ≥ 6 h                | stationary                  | 27                             | 23.6                                  |
|                            | Daint anyoning in alastrical                                                                                                                                                                 |                      | personal                    | 136                            | 50.2                                  |
|                            | Paint spraying in electrical<br>engineering/precision<br>mechanics, optics<br>Surface coating without paint<br>spraying spraying in electrical<br>engineering/precision<br>mechanics, optics | ≥ 6 h                | stationary                  | 36                             | 14                                    |
|                            |                                                                                                                                                                                              | < 6 h                | personal                    | 60                             | 89                                    |
|                            |                                                                                                                                                                                              |                      | personal                    | 72                             | 19.2                                  |
|                            |                                                                                                                                                                                              | ≥ 6 h                | stationary                  | 47                             | 10.9                                  |
|                            |                                                                                                                                                                                              |                      | personal                    | 28                             | 301.2                                 |
|                            |                                                                                                                                                                                              | < 6 h                | stationary                  | 19                             | 22.5                                  |
|                            | Surface coating (glass and                                                                                                                                                                   |                      | personal                    | 17                             | 16.3                                  |
|                            | ceramics industry)                                                                                                                                                                           | ≥ 6 h                | stationary                  | 98                             | 36.2                                  |
|                            | Surface coating in the leather                                                                                                                                                               |                      | personal                    | 22                             | 108.4                                 |
|                            | Surface coating in the leather, textile and paper industries                                                                                                                                 | ≥ 6 h                | stationary                  | 16                             | 6.3                                   |
|                            |                                                                                                                                                                                              |                      | personal                    | 38                             | 118.2                                 |
|                            | Surface coating in the<br>construction industry and the<br>stone and earth industry                                                                                                          | ≥ 6 h                | stationary                  | 21                             | 24.6                                  |
|                            | Surface coating in metal                                                                                                                                                                     |                      | personal                    | 40                             | 84                                    |
|                            | production and electroplating                                                                                                                                                                | ≥ 6 h                | stationary                  | 21                             | 11.6                                  |
|                            | Surface coating in wholesale/retail,                                                                                                                                                         | ≥ 6 h                | personal                    | 47                             | 42.2                                  |
|                            | service/transport and                                                                                                                                                                        | 26N                  | stationary                  | 13                             | 75.7                                  |
|                            | educational establishments                                                                                                                                                                   | < 6 h                | personal                    | 28                             | 29.2                                  |
|                            | Manufacture Construction Construction                                                                                                                                                        | ≥ 6 h                | personal                    | 483                            | 79.7                                  |
|                            | Manufacture of preparations for the chemical industry                                                                                                                                        |                      | stationary                  | 168                            | 68.2                                  |
| ס                          | /                                                                                                                                                                                            | < 6 h                | personal                    | 32                             | 27.2                                  |
| ssir                       | Production of plastic parts and                                                                                                                                                              | ≥ 6 h                | personal                    | 86                             | 5.4                                   |
| ÖCÖ                        | mechanical and thermal plastics processing in the plastics                                                                                                                                   | 2 U II               | stationary                  | 74                             | 5.2                                   |
| ŗq                         | industry                                                                                                                                                                                     | < 6 h                | personal                    | 17                             | 32.9                                  |
| pue                        | Manufacture and processing of                                                                                                                                                                |                      | personal                    | 22                             | 7.9                                   |
| Manufacture and processing | plastic parts in other industries<br>(moulding, prepreg, laminating,<br>casting, extruding, injection<br>moulding or plastic welding)                                                        | ≥ 6 h                | stationary                  | 18                             | 4.1                                   |
| an                         | Rubber products, manufacture                                                                                                                                                                 | ≥ 6 h                | personal                    | 67                             | 11.6                                  |
| Σ                          | and processing                                                                                                                                                                               | 2011                 | stationary                  | 29                             | 16.8                                  |
|                            | Cluipa                                                                                                                                                                                       |                      | personal                    | 161                            | 15                                    |
|                            | Gluing                                                                                                                                                                                       | ≥ 6 h                | stationary                  | 77                             | 13.6                                  |

### Statistical evaluations according to industry groups and work areas

| ndustry<br>Jroup                  | Work area group                                                                                              | Exposure<br>duration | Type of<br>measure-<br>ment | Number of<br>measure-<br>ments | Concentration<br>[mg/m³]<br>90%-value |
|-----------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------|-----------------------------|--------------------------------|---------------------------------------|
|                                   |                                                                                                              |                      | personal                    | 24                             | 14.8                                  |
|                                   |                                                                                                              | < 6 h                | stationary                  | 17                             | 14                                    |
|                                   |                                                                                                              |                      | personal                    | 25                             | 7                                     |
|                                   | Mechanical machining processes                                                                               | ≥ 6 h                | stationary                  | 65                             | 2.8                                   |
|                                   | Thermal machining processes in                                                                               | ≥ 6 h                | personal                    | 10                             | 128                                   |
|                                   | 51 7 51 51                                                                                                   |                      | stationary                  | 30                             | 18                                    |
|                                   |                                                                                                              | ≥ 6 h                | personal                    | 13                             | 86.9                                  |
|                                   | weighing in the plastics and<br>rubber industry                                                              |                      | stationary                  | 15                             | 17                                    |
|                                   | Assembly, machining, finishing                                                                               |                      | personal                    | 51                             | 14.9                                  |
| _                                 | in metalworking, mechanical                                                                                  | ≥ 6 h                | stationary                  | 43                             | 4.99                                  |
| Manuracture and<br>processing     | engineering and repair shops                                                                                 |                      | personal                    | 31                             | 15.8                                  |
| processing                        | Assembly, machining, finishing<br>in other industries<br>Packing and storage work                            | ≥ 6 h                | stationary                  | 27                             | 8.3                                   |
| ces                               |                                                                                                              |                      | personal                    | 59                             | 61.1                                  |
| pro                               |                                                                                                              | ≥ 6 h                | stationary                  | 77                             | 13.9                                  |
|                                   |                                                                                                              | < 6 h                | stationary                  | 15                             | 9.9                                   |
|                                   |                                                                                                              |                      |                             |                                | 105.0                                 |
|                                   | Cleaning and stripping of parts<br>and surfaces in electrical<br>engineering/fine<br>mechanics/metal working | ≥ 6 h<br>< 6 h       | personal                    | 27                             | 185.9                                 |
| бu                                |                                                                                                              |                      | stationary                  | 23                             | 14.8                                  |
|                                   |                                                                                                              |                      | personal                    | 20                             | 137                                   |
|                                   | Cleaning, degreasing, stripping                                                                              |                      | stationary                  | 33                             | 15.8<br>61.1                          |
| Cleaning                          |                                                                                                              | ≥ 6 h                | personal<br>stationary      | 16                             | 18.6                                  |
| ŭ                                 | of parts and surfaces in other<br>industries                                                                 | < 6 h                | personal                    | 22                             | 126                                   |
|                                   |                                                                                                              | < 6 h                | personal                    | 59                             | 170                                   |
|                                   | Cleaning of plants and                                                                                       |                      | personal                    | 24                             | 50                                    |
|                                   | containers                                                                                                   | < 6 h                | stationary                  | 14                             | 9.72                                  |
|                                   | Laboratorios in chemical                                                                                     |                      | personal                    | 38                             | 29.6                                  |
|                                   | Laboratories in chemical<br>industry                                                                         | ≥ 6 h                | stationary                  | 21                             | 32.3                                  |
|                                   |                                                                                                              |                      | personal                    | 151                            | 19.6                                  |
| S                                 |                                                                                                              | ≥ 6 h                | stationary                  | 215                            | 25.5                                  |
| Special industries and work areas | Printing and screen printing                                                                                 |                      | personal                    | 28                             | 4.1                                   |
| Υ.<br>Έ                           |                                                                                                              | < 6 h                | stationary                  | 20                             | 14                                    |
| Ň                                 |                                                                                                              |                      | personal                    | 20                             | 73                                    |
| pue                               |                                                                                                              | ≥ 6 h                | stationary                  | 29                             | 27.4                                  |
| es                                | Hospitals and pathologies                                                                                    |                      | personal                    | 18                             | 58                                    |
| stri                              |                                                                                                              | < 6 h                | stationary                  | 17                             | 60.4                                  |
| npu                               |                                                                                                              |                      | personal                    | 24                             | 12.4                                  |
| ali                               | Repair and maintenance                                                                                       | ≥ 6 h                | stationary                  | 27                             | 8.2                                   |
| peci                              |                                                                                                              | < 6 h                | personal                    | 13                             | 14.7                                  |
| S                                 | Test benches and controls                                                                                    | ≥6 h                 | personal                    | 41                             | 4.8                                   |
|                                   |                                                                                                              | ≥ 0 II               | stationary                  | 45                             | 3.7                                   |
|                                   | Waste and sewage disposal and                                                                                |                      | personal                    | 22                             | 18.3                                  |
|                                   | recycling                                                                                                    | ≥ 6 h                | stationary                  | 29                             | 16.5                                  |

| Industry<br>group  | Work area group                                                                                             | Exposure<br>duration | Type of<br>measure-<br>ment | Number of<br>measure-<br>ments | Concentration<br>[mg/m³]<br>90%-value |
|--------------------|-------------------------------------------------------------------------------------------------------------|----------------------|-----------------------------|--------------------------------|---------------------------------------|
|                    | Shipping industry                                                                                           | ≥ 6 h                | stationary                  | 94                             | < LOQ                                 |
|                    | Foundries                                                                                                   | ≥ 6 h                | stationary                  | 17                             | 28.3                                  |
|                    | Further work areas in the                                                                                   |                      | personal                    | 11                             | 29.9                                  |
| areas              | chemical, rubber and plastics industry                                                                      | ≥ 6 h                | stationary                  | 16                             | 13                                    |
| ,<br>r             | Further work areas in electrical<br>engineering/ fine<br>mechanics/metal processing<br>and repair workshops | ≥6 h                 | personal                    | 36                             | 39.6                                  |
| Ň                  |                                                                                                             | 2011                 | stationary                  | 50                             | 24                                    |
| Further work areas |                                                                                                             | < 6 h                | personal                    | 23                             | 12.7                                  |
|                    | Further work areas in                                                                                       |                      | personal                    | 12                             | 28.4                                  |
|                    | construction and stone and<br>earth industry                                                                | ≥ 6 h                | stationary                  | 15                             | 29.1                                  |
|                    | Further work areas in painting,                                                                             |                      | personal                    | 25                             | 21                                    |
| S                  | varnishing and liquid varnish<br>coating                                                                    | ≥ 6 h                | stationary                  | 30                             | 4.1                                   |
| Further work areas | Further work areas in the glass and ceramics industry                                                       | ≥ 6 h                | personal                    | 30                             | 9.6                                   |
| ow                 | Further work areas in the                                                                                   |                      | personal                    | 20                             | 15                                    |
| Irther             | leather, wood and textile industry                                                                          | ≥ 6 h                | stationary                  | 18                             | 12                                    |
| Ľ                  | Further work areas in                                                                                       | ≥6 h                 | personal                    | 38                             | 23.2                                  |
|                    | educational institutions,<br>wholesale and retail trade,                                                    | 2011                 | stationary                  | 34                             | 18.8                                  |
|                    | service and transport industry                                                                              | < 6 h                | personal                    | 10                             | 9.5                                   |
|                    |                                                                                                             | > ( F                | personal                    | 14                             | 10.2                                  |
|                    | Other branches and work areas                                                                               | ≥ 6 h                | stationary                  | 30                             | 16                                    |

#### Statistical evaluations according to industry groups and work areas

#### 7.12.1.1.3. Risks from physico-chemical properties

For a clear presentation and overview the eMSCA would prefer to group physical-chemical (PC) parameters in bands, depending on the risk assessment of the exposure scenarios. The combination of these bands will then result in risk levels with associated control measures. Currently, none of the dossiers fulfills this requirement. However, the information contained in the Appendix C of the lead dossier of the joint registration of o-xylene provides some details on the physical-chemical properties and the resulting risks. However, the eMSCA is of the opinion that still more detail would be required to fully meet the REACh requirements.

Nevertheless a skilled person will be able to select the right RMMs from the list that is given. We consider this information as acceptable and would recommend to include this Appendix into other dossiers as well.

#### 7.12.1.2. Consumers

In parallel to the SEv evaluation phase, the registrants carried out a downstream user survey regarding consumer uses, asking for product categories which should be further supported and the concentration of xylene present in the final products.

Substance Evaluation Conclusion document EC No 203-396-5, 202-422-2, 203-576-3

In consequence, they thoroughly revised the consumer exposure assessment and risk characterisation in Chapter 9 of the Chemical Safety Report, which they provided to the eMSCA in October 2015. The registrants removed all identified consumer uses and thereby exposure scenarios of m-xylene and deleted several exposure scenarios for o- and pxylene. The remaining 30 exposure scenarios were completely revised concerning operational conditions and the model used for exposure estimation. Under the expectation that an update of the registration dossier will follow in due course, the eMSCA decided to take the new data into consideration during the evaluation process.

Therefore only the two xylene isomers o- and p-xylene were the subject of further evaluation while consumer exposure assessment and risk characterisation of m-xylene was considered to be no longer necessary.

For both isomers the registrants provide new exposure scenarios calculated with ECETOC TRA Consumer Exposure Tool, version 3.1. For identical use subcategories, the operational conditions of o- and p-xylene and consequently the exposure estimates are equal. The exposure estimates are transparently documented and reproducible.

In order to identify possible risks, the consumer exposure scenarios were verified concerning appropriateness of exposure models and operational conditions especially in cases, where they differed from the common default values.

Xylenes are classified as Acute Tox. 4 (H332: Harmful if inhaled). Therefore the registrants derived chronic and acute DNELs. However, in their exposure assessment they only assessed chronic effects by averaging the event exposure over time. An exposure assessment for acute effects is missing for all contributing consumer exposure scenarios.

Based on the operational conditions and risk management measures in the Chemical Safety Report, calculations by the eMSCA led to exposure levels exceeding acute DNELs (cf. section 7.13.1.2). The data on record are not sufficient to demonstrate that risk is adequately controlled. "The refinement of exposure assessment may involve appropriate alteration of the operational conditions or risk management measures in the exposure scenario or more precise exposure estimation" (Annex I, 5.1.1 of the REACH Regulation).

For higher tier exposure estimates refined data, e.g. use descriptions, operational conditions, product-integrated risk management measures, and/or measurements of release during use are necessary. Therefore the registrants are required to provide exposure assessments and risk characterisations concerning single exposure events for all contributing scenarios of consumer use with respect to coatings and fuels taking into account both average event and peak exposure.

Furthermore the registrants are required to submit a more precise use description for these exposure scenarios where the chosen operational conditions do not appear appropriate to cover the use and therefore risks derived from these uses cannot be ruled out.

The details of the consumer exposure assessment can be found in the confidential annex of this report. In March 2016, the eMSCA noted that only very few registrants had updated their registration dossiers regarding the results of the downstream user survey, and that many of the consumer uses are still supported. Therefore the eMSCA has amended further information requirements in the draft decision based on the evaluation results obtained until September 2015. These previous results of the evaluation are not reported here in detail. But it can generally be stated that the operational conditions in these exposure scenarios are mainly defaults and therefore higher than those in the revised consumer exposure scenarios. Thus the exposure values are also higher.

In response to these requests, most of the registrants removed consumer uses from their registrations. However, it can be assumed that xylenes are present in consumer products and consumer exposure is likely. Although consumer products can contain solely the pure xylene isomers, the use of the (putatively less expensive) mixed xylenes which are registered as separate substances under REACH and therefore are not formally subjected to this substance evaluation appears more likely. The DE CA has declared its intention to potentially perform an SEv of these mixed xylenes at a later stage.

### 7.12.2. Environment

Environmental exposure assessment was outside the scope of this SEv.

#### 7.12.3. Combined exposure assessment

Not addressed.

## 7.13. Risk characterisation

#### 7.13.1.1. Workers

Considering the physicochemical properties of m-, p- and o-xylene and their industrial and professional uses, workplace exposure occurs mainly via inhalation. For quantitative risk characterisation of m-, p- and o-xylene, inhalation exposure estimates were compared with the derived long-term systemic and inhalation DNELs, respectively. The thus obtained risk characterisation ratios (RCR) were then added to calculate the combined RCR for each exposure scenario.

For m-, p- and o-xylene, a long-term systemic DNEL (inhalation) of 8.8 mg/m<sup>3</sup> (2 ppm) was derived. The DNEL value was calculated on the basis of a subchronic inhalation study in rats (Korsak et al., 1994). A detailed overview of how the eMSCA derived this DNEL is given in section 7.9.11.

The registrant used DNELs for workers that are not accepted by the eMSCA. The long-term systemic DNEL for inhalation exposure is by a factor of 25 lower than the one proposed by the registrant.

Applying the new DNEL derived by the eMSCA, risks for a series of uses of xylenes in occupational settings cannot be excluded (Obtained RCRs > 1).

The eMSCA considers that an adaptation of the EU-wide occupational exposure limit (OEL) for xylenes may be necessary.

An overview of the RCRs calculated by the eMSCA with the newly derived DNEL (workers, inhalation, systemic, long-term) is given in Table 34.

Overview of RCRs calculated by the eMSCA in critical exposure scenarios

using occupational exposure data from IFA

| Industry<br>group           | Work area group               | Exposure<br>duration | Type of<br>measure-<br>ment | Concentration<br>[mg/m³]<br>90%-value | RCR  |
|-----------------------------|-------------------------------|----------------------|-----------------------------|---------------------------------------|------|
|                             | Airless spraying              | ≥ 6 h                | personal                    | 160                                   | 18.2 |
| <u>_</u> "                  | , and so open ying            |                      | stationary                  | 49.8                                  | 5.7  |
| painting,<br>d varnish      |                               | < 6 h                | personal                    | 287.6                                 | 32.7 |
| pa                          | Spraying with pressurised air | ≥ 6 h                | personal                    | 44.4                                  | 5.0  |
| i ji ji                     | Spraying with pressurised an  |                      | stationary                  | 20.8                                  | 2.4  |
| ing<br>atii                 |                               | < 6 h                | personal                    | 46.4                                  | 5.3  |
| coating<br>g and l<br>coati |                               |                      | stationary                  | 24.6                                  | 2.8  |
| n g<br>U                    | Spraying unspecified          | ≥ 6 h                | personal                    | 37.1                                  | 4.2  |
| ishi                        | Spraying unspecifica          |                      | stationary                  | 21                                    | 2.4  |
| Surface o<br>varnishing     |                               | < 6 h                | personal                    | 57                                    | 6.5  |
| S S                         | Manual surface coating        | ≥ 6 h                | personal                    | 79.6                                  | 9.0  |
|                             | Handal surface coacing        |                      | stationary                  | 62                                    | 7.0  |

#### Table 34

| Industry<br>group                                                               | Work area group                                                  | Exposure<br>duration | Type of<br>measure-<br>ment | Concentration<br>[mg/m³]<br>90%-value | RCR         |  |
|---------------------------------------------------------------------------------|------------------------------------------------------------------|----------------------|-----------------------------|---------------------------------------|-------------|--|
|                                                                                 |                                                                  | < 6 h                | personal                    | 152                                   | 17.3        |  |
|                                                                                 | Machine surface coating                                          | ≥ 6 h                | personal                    | 96.2                                  | 10.9        |  |
|                                                                                 |                                                                  |                      | stationary                  | 32.8                                  | 3.7         |  |
|                                                                                 | Dipping, powder coating and other                                | ≥ 6 h                | personal                    | 49                                    | 5.6         |  |
|                                                                                 | unspecified surface coating                                      |                      | stationary                  | 80                                    | 9.1         |  |
|                                                                                 | processes                                                        | < 6 h                | personal                    | 273                                   | 31.0        |  |
|                                                                                 |                                                                  |                      | stationary                  | 25                                    | 2.8         |  |
|                                                                                 | Coating preparation, mixing and                                  | ≥ 6 h                | personal                    | 22.6                                  | 2.6         |  |
|                                                                                 | drying                                                           |                      | stationary                  | 34                                    | 3.9         |  |
|                                                                                 |                                                                  | < 6 h                | personal                    | 33                                    | 3.8         |  |
|                                                                                 | Airless spraying                                                 | ≥ 6 h                | personal                    | 111.4                                 | 12.7        |  |
| a                                                                               |                                                                  |                      | stationary                  | 106.2                                 | 12.1        |  |
| anik                                                                            |                                                                  | < 6 h                | personal                    | 27                                    | 3.1         |  |
| cha                                                                             | Spraying with pressurised air                                    | ≥ 6 h                | personal                    | 54                                    | 6.1         |  |
| sho                                                                             |                                                                  |                      | stationary                  | 31                                    | 3.5         |  |
| j<br>r<br>k                                                                     |                                                                  | < 6 h                | personal                    | 97<br>36.6                            | 11.0<br>4.2 |  |
| kin<br>v v                                                                      |                                                                  | ≥6 h                 | stationary                  | 65.2                                  | 4.2         |  |
| vor                                                                             | Spraying unspecified                                             | 2011                 | personal                    | 147                                   | 16.7        |  |
| rep                                                                             |                                                                  | < 6 h                | stationary                  | 30.6                                  | 3.5         |  |
| ndt                                                                             | Manual surface coating                                           | < 0 h<br>≥ 6 h       | personal                    | 100                                   | 11.4        |  |
| u a a                                                                           |                                                                  | <u> </u>             | personal<br>stationary      | 25                                    | 2.8         |  |
| Surface coating in metalworking, mechanical<br>engineering and repair workshops |                                                                  | < 6 h                | personal                    | 225.8                                 | 25.7        |  |
|                                                                                 | Machine surface coating                                          | ≥ 6 h                | personal                    | 63.4                                  | 7.2         |  |
|                                                                                 |                                                                  |                      | stationary                  | 26.4                                  | 3.0         |  |
| en                                                                              | Dipping, powder coating and other unspecified surface coating    | ≥ 6 h                | ,<br>personal               | 42.9                                  | 4.9         |  |
| urf.                                                                            |                                                                  |                      | stationary                  | 36.4                                  | 4.1         |  |
| S                                                                               | processes                                                        | < 6 h                | personal                    | 105.5                                 | 12.0        |  |
|                                                                                 | Paint spraying (chemical/plastics/<br>rubber industry)           | ≥ 6 h                | personal                    | 30                                    | 3.4         |  |
|                                                                                 |                                                                  |                      | stationary                  | 40,2                                  | 4.6         |  |
|                                                                                 | Surface coating without paint                                    | ≥ 6 h                | personal                    | 43.7                                  | 5.0         |  |
| S                                                                               | spraying (chemical/plastics/rubber                               |                      | stationary                  | 38.5                                  | 4.4         |  |
| trie                                                                            | industry)                                                        | < 6 h                | ,                           | 312.7                                 | 35.5        |  |
| indus                                                                           | Paint spraying in wood industry                                  | ≥ 6 h                | personal<br>personal        | 25.5                                  | 2.9         |  |
| other                                                                           |                                                                  |                      | stationary                  | 22.5                                  | 2.6         |  |
| g in                                                                            |                                                                  | < 6 h                | personal                    | 15.2                                  | 1.7         |  |
| Surface coating in other industries                                             | Surface coating without paint                                    | ≥ 6 h                | personal                    | 20.6                                  | 2.3         |  |
|                                                                                 | spraying in wood industry                                        |                      | stationary                  | 23.6                                  | 2.7         |  |
|                                                                                 | Paint spraying in electrical engineering/precision mechanics,    | ≥ 6 h                | personal                    | 50.2                                  | 5.7         |  |
| Irfa                                                                            |                                                                  |                      | stationary                  | 14                                    | 1.6         |  |
| ร                                                                               | optics                                                           | < 6 h                | personal                    | 89                                    | 10.1        |  |
|                                                                                 |                                                                  | ≥ 6 h                |                             | 19.2                                  | 2.2         |  |
|                                                                                 | Surface coating without paint<br>spraying spraying in electrical | _ • •                | personal                    | 10.9                                  | 1.2         |  |
|                                                                                 | engineering/precision mechanics,                                 |                      | stationary                  |                                       |             |  |
|                                                                                 |                                                                  | < 6 h                | personal                    | 301.2                                 | 34.2        |  |

| Industry<br>group                | Work area group                                                                                                                                                        | Exposure<br>duration       | Type of<br>measure-<br>ment | Concentration<br>[mg/m³]<br>90%-value | RCR  |
|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-----------------------------|---------------------------------------|------|
|                                  | optics                                                                                                                                                                 |                            | stationary                  | 22.5                                  | 2.6  |
|                                  | Surface coating (glass and                                                                                                                                             | ≥ 6 h                      | personal                    | 16.3                                  | 1.9  |
|                                  | ceramics industry)                                                                                                                                                     |                            | stationary                  | 36.2                                  | 4.1  |
|                                  | Surface coating in the leather,                                                                                                                                        | ≥ 6 h                      | personal                    | 108.4                                 | 12.3 |
|                                  | textile and paper industries                                                                                                                                           |                            | stationary                  | 6.3                                   | 0.7  |
|                                  | Surface coating in the                                                                                                                                                 | ≥ 6 h                      | personal                    | 118.2                                 | 13.4 |
|                                  | construction industry and the stone and earth industry                                                                                                                 |                            | stationary                  | 24.6                                  | 2.8  |
|                                  | Surface coating in metal                                                                                                                                               | ≥ 6 h                      | personal                    | 84                                    | 9.5  |
|                                  | production and electroplating                                                                                                                                          |                            | stationary                  | 11.6                                  | 1.3  |
|                                  | Surface coating in wholesale/retail, service/transport                                                                                                                 | ≥ 6 h                      | personal                    | 42.2                                  | 4.8  |
|                                  | and educational establishments                                                                                                                                         |                            | stationary                  | 75.7                                  | 8.6  |
|                                  |                                                                                                                                                                        | < 6 h                      | personal                    | 29.2                                  | 3.3  |
|                                  | Manufacture of preparations for                                                                                                                                        | ≥ 6 h                      | personal                    | 79.7                                  | 9.1  |
|                                  | the chemical industry                                                                                                                                                  |                            | stationary                  | 68.2                                  | 7.8  |
|                                  |                                                                                                                                                                        | < 6 h                      | personal                    | 27.2                                  | 3.1  |
|                                  | Production of plastic parts and<br>mechanical and thermal plastics<br>processing in the plastics industry                                                              | ≥ 6 h                      | personal                    | 5.4                                   | 0.6  |
| nd processing                    |                                                                                                                                                                        |                            | stationary                  | 5.2                                   | 0.6  |
|                                  |                                                                                                                                                                        | < 6 h                      | personal                    | 32.9                                  | 3.7  |
|                                  | Manufacture and processing of<br>plastic parts in other industries<br>(moulding, prepreg, laminating,<br>casting, extruding, injection<br>moulding or plastic welding) | ≥ 6 h                      | personal                    | 7.9                                   | 0.9  |
|                                  |                                                                                                                                                                        |                            | stationary                  | 4.1                                   | 0.5  |
| pro                              | Rubber products, manufacture and processing                                                                                                                            | ≥ 6 h                      | personal                    | 11.6                                  | 1.3  |
|                                  |                                                                                                                                                                        |                            | stationary                  | 16.8                                  | 1.9  |
| геа                              | Gluing                                                                                                                                                                 | ≥ 6 h                      | personal                    | 15                                    | 1.7  |
| otr                              |                                                                                                                                                                        |                            | stationary                  | 13.6                                  | 1.5  |
| ahuta                            |                                                                                                                                                                        | < 6 h                      | personal                    | 14.8                                  | 1.7  |
| Manufacture                      |                                                                                                                                                                        |                            | stationary                  | 14                                    | 1.6  |
|                                  | Mechanical machining processes                                                                                                                                         | ≥ 6 h                      | personal                    | 7                                     | 0.8  |
|                                  |                                                                                                                                                                        |                            | stationary                  | 2.8                                   | 0.3  |
|                                  | Thermal machining processes in                                                                                                                                         | ≥ 6 h                      | personal                    | 128                                   | 14.5 |
|                                  | metalworking, mechanical<br>engineering and electrical<br>engineering                                                                                                  |                            | stationary                  | 18                                    | 2.0  |
|                                  | Filling, conveying, mixing,                                                                                                                                            | ≥ 6 h                      | personal                    | 86.9                                  | 9.9  |
|                                  | weighing in the plastics and rubber industry                                                                                                                           |                            | stationary                  | 17                                    | 1.9  |
| 0                                | Assembly, machining, finishing in                                                                                                                                      | ≥ 6 h                      | personal                    | 14.9                                  | 1.7  |
| Manufacture<br>and<br>processing | metalworking, mechanical<br>engineering and repair shops                                                                                                               |                            | stationary                  | 4.99                                  | 0.6  |
| nufac<br>and<br>ocess            | Assembly, machining, finishing in<br>other industries                                                                                                                  | ≥ 6 h                      | personal                    | 15.8                                  | 1.8  |
| pr.                              |                                                                                                                                                                        | > ( +                      | stationary<br>personal      | 8.3                                   | 0.9  |
|                                  | Packing and storage work                                                                                                                                               | nd storage work $\geq 6 h$ |                             | 61.1                                  | 6.9  |

| Industry<br>group            | Work area group                                                      | Exposure<br>duration | Type of<br>measure-<br>ment | Concentration<br>[mg/m³]<br>90%-value | RCR  |  |
|------------------------------|----------------------------------------------------------------------|----------------------|-----------------------------|---------------------------------------|------|--|
|                              |                                                                      |                      | stationary                  | 13.9                                  | 1.6  |  |
|                              |                                                                      | < 6 h                | stationary                  | 9.9                                   | 1.1  |  |
|                              | Cleaning and stripping of parts                                      | ≥ 6 h                | personal                    | 185.9                                 | 21.1 |  |
|                              | and surfaces in electrical                                           |                      | stationary                  | 14.8                                  | 1.7  |  |
|                              | engineering/fine mechanics/metal<br>working                          | < 6 h                | personal                    | 137                                   | 15.6 |  |
|                              |                                                                      |                      | stationary                  | 15.8                                  | 1.8  |  |
| ueaning                      | Cleaning, degreasing, stripping of                                   | ≥ 6 h                | personal                    | 61.1                                  | 6.9  |  |
| ea                           | parts and surfaces in other industries                               |                      | stationary                  | 18.6                                  | 2.1  |  |
|                              | Industries                                                           | < 6 h                | personal                    | 126                                   | 14.3 |  |
|                              | Cleaning of plants and containers                                    | ≥ 6 h                | personal                    | 170                                   | 19.3 |  |
|                              | 2                                                                    | < 6 h                | personal                    | 50                                    | 5.7  |  |
|                              |                                                                      |                      | stationary                  | 9.72                                  | 1.1  |  |
|                              | Laboratories in chemical industry                                    | ≥ 6 h                | personal                    | 29.6                                  | 3.4  |  |
|                              |                                                                      |                      | stationary                  | 32.3                                  | 3.7  |  |
|                              | Printing and screen printing                                         | ≥ 6 h                | personal                    | 19.6                                  | 2.2  |  |
|                              |                                                                      |                      | stationary                  | 25.5                                  | 2.9  |  |
| al industries and work areas |                                                                      | < 6 h                | personal                    | 4.1                                   | 0.5  |  |
|                              |                                                                      |                      | stationary                  | 14                                    | 1.6  |  |
|                              | Hospitals and pathologies                                            | ≥ 6 h                | personal                    | 73                                    | 8.3  |  |
|                              |                                                                      |                      | stationary                  | 27.4                                  | 3.1  |  |
|                              |                                                                      | < 6 h                | personal                    | 58                                    | 6.6  |  |
| 5                            |                                                                      |                      | stationary                  | 60.4                                  | 6.9  |  |
|                              | Repair and maintenance                                               | ≥ 6 h                | personal                    | 12.4                                  | 1.4  |  |
|                              |                                                                      |                      | stationary                  | 8.2                                   | 0.9  |  |
|                              |                                                                      | < 6 h                | personal                    | 14.7                                  | 1.7  |  |
|                              | Test benches and controls                                            | ≥ 6 h                | personal                    | 4.8                                   | 0.5  |  |
|                              |                                                                      |                      | stationary                  | 3.7                                   | 0.4  |  |
|                              | Waste and sewage disposal and                                        | ≥ 6 h                | personal                    | 18.3                                  | 2.1  |  |
|                              | recycling                                                            |                      | stationary                  | 16.5                                  | 1.9  |  |
|                              | Shipping industry                                                    | ≥ 6 h                | stationary                  | < LOQ                                 | -    |  |
|                              | Foundries                                                            | ≥ 6 h                | stationary                  | 28.3                                  | 3.2  |  |
| -                            | Further work areas in the                                            | ≥ 6 h                | personal                    | 29.9                                  | 3.4  |  |
|                              | chemical, rubber and plastics industry                               |                      | stationary                  | 13                                    | 1.5  |  |
|                              | Further work areas in electrical                                     | ≥ 6 h                | personal                    | 39.6                                  | 4.5  |  |
| Further work areas           | engineering/ fine mechanics/metal<br>processing and repair workshops |                      | stationary                  | 24                                    | 2.7  |  |
|                              |                                                                      | < 6 h                | personal                    | 12.7                                  | 1.4  |  |
|                              | Further work areas in construction                                   | ≥ 6 h                | personal                    | 28.4                                  | 3.2  |  |
| r work<br>areas              | and stone and earth industry                                         |                      | stationary                  | 29.1                                  | 3.3  |  |
| Furthe<br>r work<br>areas    |                                                                      | ≥ 6 h                | personal                    | 21                                    | 2.4  |  |

| Industry<br>group | Work area group                                                             | Exposure<br>duration | Type of<br>measure-<br>ment | Concentration<br>[mg/m³]<br>90%-value | RCR |
|-------------------|-----------------------------------------------------------------------------|----------------------|-----------------------------|---------------------------------------|-----|
|                   | Further work areas in painting,<br>varnishing and liquid varnish<br>coating |                      | stationary                  | 4.1                                   | 0.5 |
|                   | Further work areas in the glass and ceramics industry                       | ≥ 6 h                | personal                    | 9.6                                   | 1.1 |
|                   | Further work areas in the leather,                                          | ≥ 6 h                | personal                    | 15                                    | 1.7 |
|                   | wood and textile industry                                                   |                      | stationary                  | 12                                    | 1.4 |
|                   | Further work areas in educational                                           | ≥ 6 h                | personal                    | 23.2                                  | 2.6 |
|                   | institutions, wholesale and retail                                          |                      | stationary                  | 18.8                                  | 2.1 |
|                   | trade, service and transport<br>industry<br>Other branches and work areas   | < 6 h                | personal                    | 9.5                                   | 1.1 |
|                   |                                                                             | ≥ 6 h                | personal                    | 10.2                                  | 1.2 |
|                   |                                                                             |                      | stationary                  | 16                                    | 1.8 |

In the opinion of the eMSCA the registrants have to consider the new calculated DNEL (worker, inhalation, systemic, long-term) for the purpose of the risk evaluation and exposure assessment.

Applying the new DNEL derived by the eMSCA, risks for a series of uses of xylenes in occupational settings cannot be excluded (Obtained RCRs > 1).

The eMSCA considers that an adaptation of the EU-wide occupational exposure limit (OEL) for xylenes may be necessary.

#### 7.13.1.2. Consumers

The details given in the sub-sections of this chapter refer to the original risk characterisation as performed by the eMSCA in 2015. The results of this assessment led to a number of consumer exposure-related information requests which, after decision-making at MSC-52, were contained in the final decisions issued for the three xylenes on 30 March 2017. In response to these requests, most, but not all registrants removed consumer uses from their registrations, thereby rendering the corresponding risk characterisation somewhat obsolete.

For the sake of transparency, however, the eMSCA decided that the original risk characterisation results should be communicated as part of this SEV Conclusion document, in order to allow the reader to fully understand the background of the information requests issued during the SEv process.

#### 7.13.1.2.1. Inhalation exposure:

Risk Characterisation Ratios (RCR) have been calculated for consumer exposure via inhalation based on the estimated exposure using the ECETOC TRA tool, v. 3.0 (cf. confidential annex) and the DNELs derived by the registrants and the eMSCA, respectively (cf. section 7.9.11). Overall, 25 coating and 5 fuel-related uses were considered. As for many of the uses there was uncertainty about whether they had to be considered single or repeated events, exposure was compared to both acute and chronic DNELs in a first risk estimation tier.

The results are included in a confidential annex.

For two coating uses potentially occurring on a daily basis, RCRs > 1 (ca. 3 and ca. 41, respectively) were obtained when compared with the chronic, but not with the acute DNELs derived by the eMSCA.

The same was true for two of the fuel-related uses with an estimated frequency of once in two weeks, for which RCRs of 4 were obtained when exposure was compared with the chronic DNEL derived by the eMSCA.

For all 23 remaining coating uses RCRs  $\geq$  1 were obtained ranging

- from ca. 1.9 to ca. 23 with respect to the acute DNEL derived by the lead registrant,
- from ca. 1.8 to ca. 90 with respect to the chronic DNEL derived by the lead registrant,
- from ca. 1.1 to ca. 325 with respect to the acute DNEL derived by the eMSCA,
- from ca. 13 to ca. 11719 with respect to the chronic DNEL derived by the eMSCA,
- and for the 3 remaining fuel-related uses RCRs
- slightly above 1 (ca. 1.0 to ca. 1.2) with respect to the chronic DNEL derived by the lead registrant and the acute DNEL derived by the eMSCA, or
- around 15 with respect to the chronic DNEL derived by the eMSCA,

were calculated.

It is noted that very high RCRs (up to the order of  $10^4$ ) with respect to the chronic DNELs were obtained for uses with short estimated daily exposure duration, sometimes as short as 3 min, where comparison to the chronic DNEL is not meaningful from a toxicological point of view.

With respect to the exceedance of acute DNELs, it has to be noted that many of the corresponding uses were characterised only in a broad or generic fashion and therefore these results represent a preliminary assessment and cannot be taken as proof that actual use poses an unacceptable risk. On the other hand, for many of these uses, repeated occurrence on successive days cannot be ruled out and in these situations risk may be underestimated by using the acute DNEL for risk characterisation.

Overal, these results strongly indicate the need for a refinement of the exposure estimation by describing more precisely the operational conditions associated with the individual consumer uses. For this reason the Substance Evaluation decisions contained a corresponding information request.

#### 7.13.1.2.2. Dermal exposure:

Based on exemplary calculations, the eMSCA considered dermal exposure as a quantitatively smaller contributor to total exposure as compared to inhalation. Since RCRs  $\geq$  1 were obtained for almost all uses when inhalation exposure was compared already with the corresponding acute DNEL, the eMSCA decided to first request a more precise use description for the respective exposure scenarios before proceeding with dermal risk characterisation.

### 7.13.1.2.3. Oral exposure:

Oral exposure of consumers to xylenes was not considered relevant by the eMSCA.

## 7.14. References

ACGIH (2001): Xylene (all isomers). American Conference of Governmental Industrial Hygienists. <u>https://www.acgih.org/forms/store/ProductFormPublic/xylene-all-isomers-tlv-</u> <u>r-chemical-substances-7th-edition-documentation</u> (last accessed 2019-05-02) DE 94 August 2021 Adams J.C., Dills R.L., Morgan M.S., Kalman D.A., and Pierce C.H. (2005): A physiologically based toxicokinetic model of inhalation exposure to xylenes in Caucasian men. Regulatory Toxicology and Pharmacology 43 (2), 203-214. DOI: 10.1016/j.yrtph.2005.07.005

Ahaghotu E., Babu R.J., Chatterjee A., and Singh M. (2005): Effect of methyl substitution of benzene on the percutaneous absorption and skin irritation in hairless rats. Toxicology Letters 159 (3), 261-271. DOI: 10.1016/j.toxlet.2005.05.020

Anderson B.E., Zeiger E., Shelby M.D., Resnick M.A., Gulati D.K., Ivett J.L., and Loveday K.S. (1990): Chromosome aberration and sister chromatoid exchange test results with 42 chemicals. Environmental and Molecular Mutagenesis 16 (Suppl. 18), 55-137. DOI: 10.1002/em.2850160505

Andersson K., Fuxe K., Nilsen O.G., Toftgård R., Eneroth P., and Gustafsson J.Å. (1981): Production of discrete changes in dopamine and noradrenaline levels and turnover in various parts of the rat brain following exposure to xylene, ortho-, meta-, and para-xylene, and ethylbenzene. Toxicology and Applied Pharmacology 60 (3), 535-548. DOI: 10.1016/0041-008X(81)90340-9

Angerer J. and Lehnert G. (1979): Occupational chronic exposure to organic solvents. VIII. Phenolic compounds - metabolites of alkylbenzenes in man. Simultaneous exposure to ethylbenzene and xylenes. International Archives of Occupational and Environmental Health 43 (2), 145-150. DOI: 10.1007/BF00378152

Ansari E.A. (1997): Ocular injury with xylene - A report of two cases. Human and Experimental Toxicology 273-275. (5), 16 http://www.scopus.com/inward/record.url?eid=2-s2.0-0030916951&partnerID=40&md5=b9ac152b4675608d50884577362a862b

Åstrand I., Engström J., and Övrum P.E.R. (1978): Exposure to xylene and ethylbenzene: I. Uptake, distribution and elimination in man. Scandinavian Journal of Work, Environment & Health 4 (3), 185-194. DOI: 10.2307/40964708

ATSDR (2007): Toxicological profile for xylene (update). Agency for Toxic Substances and Disease Registry, Division of Toxicology and Environmental Medicine/Applied Toxicology Branch, Atlanta/Georgia, USA. https://www.atsdr.cdc.gov/ToxProfiles/tp71.pdf

Ausschuss für Innenraumluftwerte (2015): Richtwerte für Dimethylbenzole in der Innenraumluft. Bundesgesundheitsblatt - Gesundheitsforschung - Gesundheitsschutz 58 (11-12), 1378-1389. DOI: 10.1007/s00103-015-2252-0

Backes W.L., Sequeira D.J., Cawley G.F., and Eyer C.S. (1993): Relationship between hydrocarbon structure and induction of p450: Effects on protein levels and enzyme activities. Xenobiotica 23 (12), 1353-1366. DOI: 10.3109/00498259309059445

Bang K.M. (1984): Health effects of common organic solvents in the workplace. Health Hazards Occupational Environment 7 15-29. in the (3), https://journals.lww.com/familyandcommunityhealth/Citation/1984/11000/Health effect s of common organic solvents in the.5.aspx

Basketter D. and Kimber I. (2010): Xylene: A summary review of skin sensitization potential

Basketter D.A., Gerberick G.F., Kimber I., and Loveless S.E. (1996): The local lymph node assay: A viable alternative to currently accepted skin sensitization tests. Food and Chemical Toxicology 34 (10), 985-997. DOI: 10.1016/S0278-6915(96)00059-2

Bauch C., Kolle S.N., Fabian E., Pachel C., Ramirez T., Wiench B., Wruck C.J., Ravenzwaay B.v., and Landsiedel R. (2011): Intralaboratory validation of four in vitro assays for the prediction of the skin sensitizing potential of chemicals. Toxicology in Vitro 25 (6), 1162-1168. DOI: 10.1016/j.tiv.2011.05.030

Bauch C., Kolle S.N., Ramirez T., Eltze T., Fabian E., Mehling A., Teubner W., van Ravenzwaay B., and Landsiedel R. (2012): Putting the parts together: Combining in vitro methods to test for skin sensitizing potentials. Regulatory Toxicology and Pharmacology 63 (3), 489-504. DOI: 10.1016/j.yrtph.2012.05.013

Bell G.M., Padgham M.D.J., Shillaker R.O., and Standring P. (1992): HSE Toxicity Review 26. Xylenes 95 DE August 2021

(1983): Parental and foetal reproduction inhalation toxicity study in rats with mixed xylenes.

Bonde J.P. (1992): Criteria document for xylene. CEC. Occupational exposure limits. EUR 14211

Bonnet P., Morele Y., and Raoult G. (1982): Determination of the median lethal concentration of the main aromatic hydrocarbons in the rat. Archives des Maladies Professionnelles de Medecine du Travail et de Securite Sociale 43 (4), 261-265. http://www.scopus.com/inward/record.url?eid=2-s2.0-

0020282986&partnerID=40&md5=1e0fd095d851c87fe232c59f40498470

Bonnet P., Raoult G., and Gradiski D. (1979): Lethal concentration 50 of main aromatic hydrocarbons. Archives des Maladies Professionnelles de Medecine du Travail et de Securite Sociale 40 (8-9), 805-810. <u>http://www.scopus.com/inward/record.url?eid=2-s2.0-0018603377&partnerID=40&md5=069a10ab03b4844aded7afe3127e5452</u>

Bos R.P., Brouns R.M.E., van Doorn J.L.G., Theuws J.L.G., and Henderson P.T. (1981): Nonmutagenicity of toluene, o-xylene, m-xylene, p-xylene, o-methylbenzylalcohol and omethylbenzylsulfate in the Ames assay. Mutation Research 88 (3), 273-280. DOI: 10.1016/0165-1218(81)90038-0

Bowers E.J., Cannon M.S., and Jones D.H. (1982): Ultrastructural changes in livers of young and aging rats exposed to methylated benzenes. American Journal of Veterinary Research 43 (4), 679-683

Brown-Woodman P.D.C., Webster W.S., Picker K., and Ritchie H.E. (1991): Embryotoxicity of xylene and toluene: An in vitro study. Industrial Health 29 (4), 139-152. DOI: 10.2486/indhealth.29.139

Carpenter C.P., Kinkead E.R., Geary Jr D.L., Sullivan L.J., and King J.M. (1975): Petroleum hydrocarbon toxicity studies. V. Animal and human response to vapors of mixed xylenes. Toxicology and Applied Pharmacology 33 (3), 543-558. DOI: 10.1016/0041-008X(75)90079-4

Chatterjee A., Babu R.J., Ahaghotu E., and Singh M. (2005): The effect of occlusive and unocclusive exposure to xylene and benzene on skin irritation and molecular responses in hairless rats. Archives of Toxicology 79 (5), 294-301. DOI: 10.1007/s00204-004-0629-1

Chen C.S., Hseu Y.C., Liang S.H., Kuo J.Y., and Chen S.C. (2008): Assessment of genotoxicity of methyl-tert-butyl ether, benzene, toluene, ethylbenzene, and xylene to human lymphocytes using comet assay. Journal of Hazardous Materials 153 (1-2), 351-356. DOI: 10.1016/j.jhazmat.2007.08.053

Chevron Chemical Company (1973): The skin corrosion potential of Chevron paraxylene 99%. Report no. SOCAL 407E/XVI:70

Condie L.W., Hill J.R., and Borzelleca J.F. (1988): Oral toxicology studies with xylene isomers and mixed xylenes. Drug and Chemical Toxicology 11 (4), 329-354. DOI: 10.3109/0148054880901810

Crofton K.M., Lassiter T.L., and Rebert C.S. (1994): Solvent-induced ototoxicity in rats: An atypical selective mid-frequency hearing deficit. Hearing Research 80 (1), 25-30. DOI: 10.1016/0378-5955(94)90005-1

Crookes M.J., Dobson S., and Howe P.D. (1993): Environmental hazard assessment: Xylenes. Toxic Substances Division. Department of the Environment, London 12 (1993)

De Ceaurriz J.C., Micillino J.C., Bonnet P., and Guenier J.P. (1981): Sensory irritation caused by various industrial airborne chemicals. Toxicology Letters 9 (2), 137-143. DOI: 10.1016/0378-4274(81)90030-8

DECOS (1991): Health-based recommended occupational exposure limit for xylene. report number 90804. Dutch Expert Committee for Occupational Standards. Department of Social Affairs and Employment, Directorate General of Labour

Donner M., Maki-Paakkanen J., and Norppa H. (1980): Genetic toxicology of xylenes. Mutation Research 74 (3), 9. DOI: 10.1016/0165-1161(80)90009-6

Dudek B., Gralewicz K., Jakubowski M., Kostrzewski P., and Sokal J. (1990): Neurobehavioral effects of experimental exposure to toluene, xylene and their mixture. Polish Journal of Occupational Medicine 3 (1), 109-116

Dyer R.S., Bercegeay M.S., and Mayo L.M. (1988): Acute exposures to p-xylene and toluene alter visual information processing. Neurotoxicology and Teratology 10 (2), 147-153. DOI: 10.1016/0892-0362(88)90079-7

ECETOC (1986): Xylenes. ECETOC Joint Assessment of Commodity Chemicals 6 (1986)

ECETOC (1997): Occupational exposure limits for hydrocarbon solvents

ECHA (2017): Read-Across Assessment Framework (RAAF). ECHA-17-R-01-EN, date: 2017-03. European Chemicals Agency. Agency E.C., Helsinki. DOI: 10.2823/619212 (last accessed 2019-05-03)

Elovaara E., Engström K., and Vainio H. (1984): Metabolism and disposition of simultaneously inhaled m-xylene and ethylbenzene in the rat. Toxicology and Applied Pharmacology 75 (3), 466-478. DOI: 10.1016/0041-008X(84)90183-2

Engström K., Husman K., and Riihimäki V. (1977): Percutaneous absorption of m-xylene in man. International Archives of Occupational and Environmental Health 39 (3), 181-189. DOI: 10.1007/BF00405662

Ernstgård L., Gullstrand E., Löf A., and Johanson G. (2002): Are women more sensitive than men to 2-propanol and m-xylene vapours? Occupational and Environmental Medicine 59 (11), 759-767. DOI: 10.1136/oem.59.11.759

European Commission (2008): Murine Local Lymph Node Assay (LLNA) Performance Standards, date: 2008-10. European Commission, Joint Research Centre, Institute for Health and Consumer Protection, In-vitro Toxicology Unit, European Centre for the Validation of Alternative Methods (ECVAM)

Faber W.D., Roberts L.S.G., Stump D.G., Tardif R., Krishnan K., Tort M., Dimond S., Dutton D., Moran E., and Lawrence W. (2006): Two generation reproduction study of ethylbenzene by inhalation in Crl-CD rats. Birth Defects Research Part B - Developmental and Reproductive Toxicology 77 (1), 10-21. DOI: 10.1002/bdrb.20063

Florin I., Rutberg L., Curvall M., and Enzell C.R. (1980): Screening of tabacco smoke constituents for mutagenicity using the Ames' test. Toxicology 15 (3), 219-232. DOI: 10.1016/0300-483X(80)90055-4

Fuente A., McPherson B., and Cardemil F. (2013): Xylene-induced auditory dysfunction in humans. Ear and Hearing 34 (5), 651-660. DOI: 10.1097/AUD.0b013e31828d27d7

Gabriel S., Koppisch D., and Range D. (2010): The MGU–a monitoring system for the collection and documentation of valid workplace exposure data. Gefahrstoffe–Reinhalt. Luft 70 (1/2), 43-49

Gagnaire F. and Langlais C. (2005): Relative ototoxicity of 21 aromatic solvents. Archives of Toxicology 79 (6), 346-354. DOI: 10.1007/s00204-004-0636-2

Gagnaire F., Marignac B., Blachère V., Grossmann S., and Langlais C. (2007): The role of toxicokinetics in xylene-induced ototoxicity in the rat and guinea pig. Toxicology 231 (2–3), 147-158. DOI: <u>http://dx.doi.org/10.1016/j.tox.2006.11.075</u>

Gagnaire F., Marignac B., Langlais C., and Bonnet P. (2001): Ototoxicity in rats exposed to ortho-, meta- and para-xylene vapours for 13 weeks. Pharmacology and Toxicology 89 (1), 6-14. DOI: 10.1111/j.1600-0773.2001.890102.x

Gamberale F., Annwall G., and Hultengren M. (1978): Exposure to xylene and ethylbenzene. III. Effects on central nervous functions. Scandinavian Journal of Work, Environment and Health 4 (3), 204-211. DOI: 10.5271/sjweh.2705

German MSCA (2008): Risk Assessment Ethylbenzene CAS-No.: 100-41-4 EINECS-No.:202-849-4DraftofNovember2008.http://echa.europa.eu/documents/10162/13630/trdrargermanyethylbenzeneen.pdf

Gerner-Smidt P. and Friedrich U. (1978): The mutagenic effect of benzene, toluene and xylene studied by the SCE technique. Mutat Res 58 (2-3), 313-316

Substance Evaluation Conclusion document EC No 203-396-5, 202-422-2, 203-576-3

Gralewicz S. and Wiaderna D. (2001): Behavioral effects following subacute inhalation exposure to m-xylene or trimethylbenzene in the rat a comparative study. NeuroToxicology 22 (1), 79-89. DOI: 10.1016/S0161-813X(00)00003-6

Gralewicz S., Wiaderna D., and Tomas T. (1995): Development of spontaneous, agerelated nonconvulsive seizure electrocortical activity and radial-maze learning after exposure to m-xylene in rats. International Journal of Occupational Medicine and Environmental Health 8 (4), 347-360. <u>http://cybra.p.lodz.pl/Content/10457/IJOMEH 1995 Vol 8 No 4 %28347-360%29.pdf</u>

Gunasekar P.G., Rogers J.V., Kabbur M.B., Garrett C.M., Brinkley W.W., and McDougal J.N. (2003): Molecular and histological responses in rat skin exposed to m-xylene. Journal of Biochemical and Molecular Toxicology 17 (2), 92-94. DOI: 10.1002/jbt.10065

Hass U. and Jakobsen B.M. (1993): Prenatal toxicity of xylene inhalation in the rat: a teratogenicity and postnatal study. Pharmacology & Toxicology 73 (1), 20-23. DOI: 10.1111/j.1600-0773.1993.tb01951.x

Hass U., Lund S.P., and Simonsen L. (1997): Long-lasting neurobehavioral effects of prenatal exposure to xylene in rats. Neurotoxicology 18 (2), 547-551

Hass U., Lund S.P., Simonsen L., and Fries A.S. (1995): Effects of prenatal exposure to xylene on postnatal development and behavior in rats. Neurotoxicology and Teratology 17 (3), 341-349

Hastings H.C., G.;Burg,W. (1984): Human sensory response to selected petroleum hydrocarbons. Advances in Modern Environmental Toxicology 6, 255-270

Haworth S., Lawlor T., and Mortelmans K. (1983): Salmonella mutagenicity test results for 250 chemicals. Environmental Mutagenesis 5 (SUPPL. 1), 3-142. http://www.scopus.com/inward/record.url?eid=2-s2.0-0021042686&partnerID=40&md5=95fca1f9cc8d5cbe226995193f24679d

| (1983a): Primary skin irritation study in rabbits. o-Xylene.          |
|-----------------------------------------------------------------------|
| (1983b): Respiratory tract irritancy study in mice. o-Xylene.         |
| (1983c): Respiratory tract irritancy study in mice. p-Xylene.         |
| (1983d): Unwashed primary eye irritation study in rabbits. o-Xylene.  |
| (1983e): Washed primary eye irritation study in rabbits. o-Xylene.    |
| (1986): p-Xylene: Acute inhalation toxicity study - LC50 rats (4 hour |

exposure).

Health Council of the Netherlands (2001): Xylene. Evaluation of the effects on reproduction, recommendation for classification. Report no. 2001/100SH, date: 2001-12-20. Committee for Compounds toxic to reproduction, a committee of the Health Council of the Netherlands.

https://www.healthcouncil.nl/binaries/healthcouncil/documents/advisoryreports/2001/12/20/xylene/advisory-report-xylene-evaluation-of-the-effects-onreproduction-recommendation-for-classification.pdf (last accessed 2019-05-03)

Hine C.H. and Zuidema H.H. (1970): The toxicological properties of hydrocarbon solvents. IMS, Industrial Medicine and Surgery 39 (5), 215-220

(1973): Mutagenicity study of thirteen petroleum fractions.

Honma T., Sudo A., Miyagawa M., Sato M., and Hasegawa H. (1983): Significant changes in the amounts of neurotransmitter and related substances in rat brain induced by subacute exposure to low levels of toluene and xylene. Industrial Health 21 (3), 143-151. DOI: 10.2486/indhealth.21.143

Substance Evaluation Conclusion document EC No 203-396-5, 202-422-2, 203-576-3

Hudak A. and Ungvary G. (1978): Embryotoxic effects of benzene and its methyl derivatives: Toluene, xylene. Toxicology 11 (1), 55-63. DOI: 10.1016/S0300-483X(78)90439-0

IARC (1989): Xylene. In: IARC monographs on the evaluation of carcinogenic risks to humans. Some organic solvents, resin monomers and related compounds, pigments and occupational exposures in paint manufacture, pp. 125-156. World Health Organization, on Cancer, International Agency for Research France. Lyon, https://monographs.iarc.fr/ENG/Monographs/vol47/mono47.pdf (last accessed 2019-05-03)

ICCVAM (2009): Recommended Performance Standards: Murine Local Lymph Node Assay. NIH Publication No. 09-7357. National Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological Methods. National Toxicology Program P.O.B., Park, Research Triangle NC 27709. https://ntp.niehs.nih.gov/iccvam/docs/immunotox\_docs/llna-ps/llnaperfstds.pdf (last accessed 2019-05-03)

IFA (2016): MEGA-Auswertungen zur Erstellung von REACH-Expositionsszenarien für Xylol (alle Isomeren), date: September 2016. Institute for Occupational Safety and Health of the German Social Accident Insurance (IFA). (IFA) I.f.O.S.a.H.o.t.G.S.A.I.

Inoue O., Seiji K., Kawai T., Watanabe T., Jin C., Cai S.X., Chen Z., Qu Q.S., Zhang T., and Ikeda M. (1993): Excretion of methylhippuric acids in urine of workers exposed to a xylene mixture: comparison among three xylene isomers and toluene. International Archives of Occupational and Environmental Health 64 (7), 533-539. DOI: 10.1007/BF00381104

Jacobs G., Martens M., and Mosselmans G. (1987): Proposal of limit concentrations for skin irritation within the context of a new EEC directive on the classification and labeling of preparations. Regulatory Toxicology and Pharmacology 7 (4), 370-378. DOI: 10.1016/0273-2300(87)90057-2

Janasik B., Jakubowski M., and Jałowiecki P. (2008): Excretion of unchanged volatile organic compounds (toluene, ethylbenzene, xylene and mesitylene) in urine as result of experimental human volunteer exposure. International Archives of Occupational and Environmental Health 81 (4), 443-449. DOI: 10.1007/s00420-007-0233-9

Jenkins L.J., Jr., Jones R.A., and Siegel J. (1970): Long-term inhalation screening studies of benzene, toluene, o-xylene, and cumene on experimental animals. Toxicology and Applied Pharmacology 16 (3), 818-823. DOI: 10.1016/0041-008X(70)90088-8

Juárez-Pérez C.A., Torres-Valenzuela A., Haro-García L.C., Borja-Aburto V.H., and Aguilar-Madrid G. (2014): Ototoxicity effects of low exposure to solvent mixture among paint manufacturing workers. International Journal of Audiology 53 (6), 370-376. DOI: 10.3109/14992027.2014.888597

Kandyala R., Raghavendra S.P.C., and Rajasekharan S.T. (2010): Xylene: An overview of its health hazards and preventive measures. Journal of Oral and Maxillofacial Pathology 14 (1), 1-5. DOI: 10.4103/0973-029X.64299

Kaneko T., Wang P.Y., Tsukada H., and Sato A. (1995): m-Xylene toxicokinetics in phenobarbital-treated rats: comparison among inhalation exposure, oral administration, and intraperitoneal administration. Toxicology and Applied Pharmacology 131 (1), 13-20. DOI: 10.1006/taap.1995.1041

Kawai T., Mizunuma K., Yasugi T., Horiguchi S., Uchida Y., Iwami O., Iguchi H., and Ikeda M. (1991): Urinary methylhippuric acid isomer levels after occupational exposure to a xylene mixture. International Archives of Occupational and Environmental Health 63 (1), 69-75. DOI: 10.1007/BF00406201

Kezic S., Monster A.C., Van de Gevel I.A., Krüse J., Opdam J.J.G., and Verberk M.M. (2001): Dermal absorption of neat liquid solvents on brief exposures in volunteers. Hygiene Association Journal American Industrial 62 (1),12-18. DOI: 10.1080/15298660108984604

Kligman A.M. (1966): The identification of contact allergens by human assay. III. The maximization test: a procedure for screening and rating contact sensitizers. Journal of Investigative Dermatology 47 (5), 393-409. DOI: 10.1038/jid.1966.160

Klimisch H.J., Pauluhn J., Hollander H.W., Doe J.E., Clark D.G., and Cambridge G.W. (1988): Inhalation hazard test. Interlaboratory trial with OECD method 403. Archives of Toxicology 61 (4), 318-320. DOI: 10.1007/BF00364856

Korsak Z., Sokal J.A., and Gorny R. (1992): Toxic effects of combined exposure to toluene and m-xylene in animals, III, Subchronic inhalation study, Polish Journal of Occupational Health (1), Medicine and Environmental 5 27-33. http://cybra.p.lodz.pl/Content/10645/PJOMEH 1992 Vol 5 No 1 %2827-33%29.pdf (last accessed 2019-05-03)

Korsak Z., Sokal J.A., Wasiela T., and Swiercz R. (1990): Toxic effects of acute exposure to particular xylene isomers in animals. Polish Journal of Occupational Medicine 3 (2), 221-226. http://cvbra.lodz.pl/Content/10811/PJOM 1990 Vol 3 No 2 (221-226).pdf (last accessed 2019-05-03)

Korsak Z., Swiercz R., and Jedrychowski R. (1993): Effects of acute combined exposure to N-butyl alcohol and m-xylene. Polish Journal of Occupational Medicine and Environmental Health 6 (1), 35-41. http://cybra.lodz.pl/Content/10550/PJOMEH 1993 Vol 6 No 1 (35-41).pdf (last accessed 2019-05-03)

Korsak Z., Wisniewska-Knypl J., and Swiercz R. (1994): Toxic effects of subchronic combined exposure to n-butyl alcohol and m-xylene in rats. International Journal of Occupational Medicine and Environmental Health 7 (2), 155-166. http://cybra.lodz.pl/Content/10488/IJOMEH 1994 Vol 7 No 2 (155-166).pdf (last accessed 2019-05-03)

Laine A., Savolainen K., Riihimaki V., Matikainen E., Salmi T., and Juntunen J. (1993): Acute effects of m-xylene inhalation on body sway, reaction times, and sleep in man. International Archives of Occupational and Environmental Health 65 (3), 179-188. DOI: 10.1007/BF00381154

Lebowitz H., Brusick D., Matheson D., Jagannath D.R., Reed M., Goode S., and Roy G. (1979): Commonly used fuels and solvents evaluated in a battery of short-term bioassays. Environmental Mutagenesis 1 (2), 172. DOI: 10.1002/em.2860010205

Liira J., Elovaara E., Raunio H., Riihimaki V., and Engstrom K. (1991): Metabolic interaction and disposition of methyl ethyl ketone and m-xylene in rats at single and repeated inhalation exposures. Xenobiotica 21 (1), 53-63. DOI: 10.3109/00498259109039450

(1978a): Mutagenicity evaluation of xylene, unpublished

(1978b): Teratology study in rats. , unpublished

Low L.K., Meeks J.R., and Mackerer C.R. (1989): Health effects of the alkylbenzenes. II. Xylenes. Industrial Health 5 (1), 85-105. DOI: Toxicology and 10.1177/074823378900500108

Lundberg I., Ekdahl M., Kronevi T., Lidums V., and Lundberg S. (1986): Relative hepatotoxicity of some industrial solvents after intraperitoneal injection or inhalation exposure in rats. Environmental Research 40 (2), 411-420. DOI: 10.1016/S0013-9351(86)80116-5

Maguin K., Lataye R., Campo P., Cossec B., Burgart M., and Waniusiow D. (2006): Ototoxicity of the three xylene isomers in the rat. Neurotoxicology and Teratology 28 (6), 648-656. DOI: 10.1016/j.ntt.2006.08.007

Marchand A., Aranda-Rodriguez R., Tardif R., Nong A., and Haddad S. (2015): Human inhalation exposures to toluene, ethylbenzene, and m-xylene and physiologically based pharmacokinetic modeling of exposure biomarkers in exhaled air, blood, and urine. Toxicological Sciences 144 (2), 414-424. DOI: 10.1093/toxsci/kfv009

Marks T.A., Ledoux T.A., and Moore J.A. (1982): Teratogenicity of a commercial xylene mixture in the mouse. Journal of Toxicology and Environmental Health 9 (1), 97-105. DOI: 10.1080/15287398209530145 DE

Matthews E.J., Spalding J.W., and Tennant R.W. (1993): Transformation of BALB/c-3T3 cells: V. Transformation responses of 168 chemicals compared with mutagenicity in Salmonella and carcinogenicity in rodent bioassays. Environmental Health Perspectives 2, 347-482. DOI: 10.1289/ehp.93101s2347

McCarroll N.E., Keech B.H., and Piper C.E. (1981a): A microsuspension adaptation of the Bacillus subtilis 'rec' assay. Environmental Mutagenesis 3 (6), 607-616. DOI: 10.1002/em.2860030603

McCarroll N.E., Piper C.E., and Keech B.H. (1981b): An E coli microsuspension assay for the detection of DNA damage induced by direct-acting agents and promutagens. Environmental Mutagenesis 3 (4), 429-444. DOI: 10.1002/em.2860030404

Miller M.J. and Edwards J.W. (1999): Possible preferential metabolism of xylene isomers following occupational exposure to mixed xylenes. International Archives of Occupational and Environmental Health 72 (2), 89-97. DOI: 10.1007/s004200050343

Mohtashamipur E., Norpoth K., Woelke U., and Huber P. (1985): Effects of ethylbenzene, toluene, and xylene on the induction of micronuclei in bone marrow polychromatic erythrocytes of mice. Archives of Toxicology 58 (2), 106-109. DOI: 10.1007/BF00348318

Morel G., Bonnet P., Cossec B., Morel S., Cour C., Lambert A.M., Roure M.B., and Brondeau M.T. (1998): The role of glutathione and cysteine conjugates in the nephrotoxicity of oxylene in rats. Archives of Toxicology 72 (9), 553-558. DOI: 10.1007/s002040050542

Muhammad F., Monteiro-Riviere N.A., and Riviere J.E. (2005): Comparative In Vivo Toxicity of Topical JP-8 Jet Fuel and Its Individual Hydrocarbon Components: Identification of Tridecane and Tetradecane as Key Constituents Responsible for Dermal Irritation. Toxicologic Pathology 33 (2), 258-266. DOI: 10.1080/01926230590908222

Myhr B., McGregor D., Bowers L., Riach C., Brown A.G., Edwards I., McBride D., Martin R., and Caspary W.J. (1990): L5178Y mouse lymphoma cell mutation assay results with 41 compounds. Environmental and Molecular Mutagenesis 16 (Suppl. 18), 138-167. DOI: 10.1002/em.2850160506

Nakamura S.i., Oda Y., Shimada T., Oki I., and Sugimoto K. (1987): SOS-inducing activity of chemical carcinogens and mutagens in Salmonella typhimurium TA1535/pSK1002: examination with 151 chemicals. Mutation Research Letters 192 (4), 239-246. DOI: 10.1016/0165-7992(87)90063-7

NIWL (2005): Scientific basis for Swedish occupational standards XXVI. Consensus report for xylenes. NR 2005:17. National Institute for Working Life, Criteria Group for Occupational Standards. <u>https://gupea.ub.gu.se/bitstream/2077/4342/1/ah2005\_17.pdf</u> (last accessed 2019-05-03)

NTP (1986): Toxicology and carcinogenesis studies of xylenes (mixed) (60% m-xylene, 14% p-xylene, 9% o-xylene, and 17% ethylbenzene) (CAS no. 1330-20-7) in F344/N rats and B6C3F1 mice (gavage studies). National Toxicology Program Technical Report Series 327, 1-160. <u>https://ntp.niehs.nih.gov/ntp/htdocs/lt\_rpts/tr327.pdf</u> (last accessed 2019-05-03)

OECD (2012): The Adverse Outcome Pathway for Skin Sensitisation Initiated by Covalent Binding to Proteins. Part 1: Scientific Evidence. ENV/JM/MONO(2012)10/PART1, date: 2012-05-04. Organisation for Economic Co-operation and Development (OECD). OECD, Paris, France. <u>http://www.oecd-ilibrary.org/deliver/9789264221444-en.pdf?itemId=/content/publication/9789264221444-en&mimeType=application/pdf</u> (last accessed 2019-05-03)

Ogata M., Tomokuni K., and Takatsuka Y. (1970): Urinary excretion of hippuric acid and m- or p-methylhippuric acid in the urine of persons exposed to vapours of toluene and m- or p-xylene as a test of exposure. British Journal of Industrial Medicine 27 (1), 43-50. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1009040/ (last accessed 2019-05-03)

Olson B.A., Gamberale F., and Iregren A. (1985): Coexposure to toluene and p-xylene in man: Central nervous functions. British Journal of Industrial Medicine 42 (2), 117-122. DOI: 10.1136/oem.42.2.117

Pap M. and Varga C. (1987): Sister-chromatid exchanges in peripheral lymphocytes of workers occupationally exposed to xylenes. Mutation Research 187 (4), 223-225. DOI: 10.1016/0165-1218(87)90040-1

Park S.H., AuCoin T.A., Silverman D.M., and Schatz R.A. (1994): Time-dependent effects of o-xylene on rat lung and liver microsomal membrane structure and function. Journal of Toxicology and Environmental Health 43 (4), 469-481. DOI: 10.1080/15287399409531935

Pryor G.T., Rebert C.S., and Howd R.A. (1987): Hearing loss in rats caused by inhalation of mixed xylenes and styrene. Journal of Applied Toxicology 7 (1), 55-61. DOI: 10.1002/jat.2550070110

Riihimäki V. (1979): Percutaneous absorption of m-xylene from a mixture of m-xylene and isobutyl alcohol in man. Scandinavian Journal of Work, Environment and Health 5 (2), 143-150. <u>https://www.jstor.org/stable/40964768?seq=1#page\_scan\_tab\_contents</u> (last accessed 2019-05-03)

Römpp(2015):Xylole.ThiemeVerlag,Stuttgart,Germany.https://roempp.thieme.de/roempp4.0/do/data/RD-24-00154(last accessed 2019-05-03)

Rosen M.B., Crofton K.M., and Chernoff N. (1986): Postnatal evaluation of prenatal exposure to p-xylene in the rat. Toxicology Letters 34 (2-3), 223-229. DOI: 10.1016/0378-4274(86)90214-6

Saillenfait A.M., Gallissot F., Morel G., and Bonnet P. (2003): Developmental toxicities of ethylbenzene, ortho-, meta-, para-xylene and technical xylene in rats following inhalation exposure. Food and Chemical Toxicology 41 (3), 415-429. DOI: 10.1016/S0278-6915(02)00231-4

Savolainen H. and Pfäffli P. (1980): Dose-dependent neurochemical changes during shortterm inhalation exposure to m-xylene. Archives of Toxicology 45 (2), 117-122. DOI: 10.1007/BF01270909

Savolainen K., Kekoni J., Riihimaki V., and Laine A. (1984): Immediate effects of m-xylene on the human central nervous system. Archives of Toxcicology. Supplement 7 (Suppl.), 412-417. DOI: 10.1007/978-3-642-69132-4\_76

Savolainen K., Riihimaki V., Seppalainen A.M., and Linnoila M. (1980): Effects of shortterm m-xylene exposure and physical exercise on the central nervous system. International Archives of Occupational and Environmental Health 45 (2), 105-121. DOI: 10.1007/BF01274130

Šedivec V. and Flek J. (1976): The absorption, metabolism, and excretion of xylenes in man. International Archives of Occupational and Environmental Health 37 (3), 205-217. DOI: 10.1007/BF00378419

Selgrade M.K., Daniels M.J., Jaskot R.H., Robinson B.L., and Allis J.W. (1993): Enhanced mortality and liver damage in virus-infected mice exposed to p-xylene. J Toxicol Environ Health 40 (1), 129-144

Seppalainen A.M., Laine A., Salmi T., Riihimaki V., and Verkkala E. (1989): Changes induced by short-term xylene exposure in human evoked potentials. International Archives of Occupational and Environmental Health 61 (7), 443-449

Shimizu H., Suzuki Y., Takemura N., Goto S., and Matsushita H. (1985): The results of microbial mutation test for forty-three industrial chemicals. Japanese Journal of Industrial Health 27 (6), 400-419. DOI: 10.1539/joh1959.27.400

Silverman D.M. and Schatz R.A. (1991): Pulmonary microsomal alterations following shortterm low level inhalation of p-xylene in rats. Toxicology 65 (3), 271-281. DOI: 10.1016/0300-483X(91)90086-G

Simmons J.E., Allis J.W., Grose E.C., Seely J.C., Robinson B.L., and Berman E. (1991): Assessment of the hepatotoxicity of acute and short-term exposure to inhaled p-xylene in F-344 rats. Journal of Toxicology and Environmental Health 32 (3), 295-306. DOI: 10.1080/15287399109531483

Substance Evaluation Conclusion document EC No 203-396-5, 202-422-2, 203-576-3

Smyth H.F.J., Carpenter C.P., Weil C.S., Pozzani U.C., and Striegel J.A. (1962): Rangefinding toxicity data: List VI. American Industrial Hygiene Association Journal 23, 95-107. <u>http://www.scopus.com/inward/record.url?eid=2-s2.0-</u> 0002454738&partnerID=40&md5=123d0b32adf4a1ccf47705ddb54d53fc

ten Berge W. (2009): A simple dermal absorption model: Derivation and application. Chemosphere 75 (11), 1440-1445. DOI: 10.1016/j.chemosphere.2009.02.043

Toftgard R. and Nilsen O.G. (1982): Effects of xylene and xylene isomers on cytochrome P-450 and in vitro enzymatic activities in rat liver, kidney and lung. Toxicology 23 (2-3), 197-212

Uchida Y., Nakatsuka H., Ukai H., Watanabe T., Liu Y.T., Huang M.Y., Wang Y.L., Zhu F.Z., Yin H., and Ikeda M. (1993): Symptoms and signs in workers exposed predominantly to xylenes. International Archives of Occupational and Environmental Health 64 (8), 597-605. DOI: 10.1007/BF00517707

Ungvary G., Tatrai E., Hudak A., Barcza G., and Lorincz M. (1980): Studies on the embryotoxic effects of ortho-, meta- and para-xylene. Toxicology 18 (1), 61-74. DOI: 10.1016/0300-483X(80)90038-4

Urbisch D., Mehling A., Guth K., Ramirez T., Honarvar N., Kolle S., Landsiedel R., Jaworska J., Kern P.S., Gerberick F., Natsch A., Emter R., Ashikaga T., Miyazawa M., and Sakaguchi H. (2015): Assessing skin sensitization hazard in mice and men using non-animal test methods. Regulatory Toxicology and Pharmacology 71 (2), 337-351. DOI: 10.1016/j.yrtph.2014.12.008

USEPA (1989): Health effects assessment for xylenes. Report number EPA/600/8-89/098. United States Environmental Protection Agency,, Office of Research and Development, Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, Ohio, USA

Vainio H., Waters M.D., and Norppa H. (1985): Mutagenicity of selected organic solvents. Scandinavian Journal of Work, Environment, and Health 11 (1), 75-82. <u>https://www.jstor.org/stable/40965135?seq=1#page scan tab contents</u> (last accessed 2019-05-03)

van Doorn R., Bos R.P., Brouns R.M.E., Leijdekkers C.M., and Henderson P.T. (1980): Effect of toluene and xylenes on liver glutathione and their urinary excretion as mercapturic acids in the rat. Archives of Toxicology 43 (4), 293-304. DOI: 10.1007/BF00366185

Vyskocil A., Truchon G., Leroux T., Lemay F., Gendron M., Gagnon F., Majidi N.E., Boudjerida A., Lim S., Emond C., and Viau C. (2012): A weight of evidence approach for the assessment of the ototoxic potential of industrial chemicals. Toxicology and Industrial Health 28 (9), 796-819. DOI: 10.1177/0748233711425067

Ware G.W. (1988): Xylenes. Reviews of Environmental Contamination and Toxicology 106, 213-222. DOI: 10.1007/978-1-4612-3922-2\_19

Washington W.J., Murthy R.C., Doye A., Eugene K., Brown D., and Bradley I. (1983): Induction of morphologically abnormal sperm in rats exposed to o-xylene. Archives of Andrology 11 (3), 233-237. DOI: 10.3109/01485018308987487

WHO (1997): Xylenes. Environmental Health Criteria 190. World Health Organization, Geneva, Switzerland. <u>http://www.inchem.org/documents/ehc/ehc/ehc190.htm</u> (last accessed 2019-05-03)

Wiger R. (1992): Summaries and classifications of 12 substances according to the Nordic criteria. Nordic Criteria for Reproductive Toxicity 16, 25-59

Wolf M.A., Rowe V.K., McCollister D.D., Hollingsworth R.L., and Oyen F. (1956): Toxicological studies of certain alkylated benzenes and benzene; experiments on laboratory animals. AMA Arch Ind Health 14 (4), 387-398. https://www.ncbi.nlm.nih.gov/pubmed/13361560

Zahlsen K., Eide I., Nilsen A.M., and Nilsen O.G. (1992): Inhalation kinetics of C6 to C10 aliphatic, aromatic and naphthenic hydrocarbons in rat after repeated exposures. Pharmacology and Toxicology 71 (2), 144-149

Zeiger E., Anderson B., Haworth S., Lawlor T., Mortelmans K., and Speck W. (1987): Salmonella Mutagenicity tests: III. Results from the testing of 255 chemicals. Environmental Mutagenesis 9 (S9), 61-109. DOI: 10.1002/em.2860090603

## 7.15. Abbreviations

| ADH<br>ADME<br>AE<br>AF<br>AOP<br>ATSDR<br>BOELV<br>CA<br>CCH<br>CLH<br>CNS<br>CORAP<br>CYP<br>eteam<br>DNEL<br>DPRA<br>EC/D<br>ECETOC<br>ECHA<br>ECVAM<br>ED | Alcohol Dehydrogenase<br>Absorption, Distribution, Metabolism, and Excretion<br>Assessment Element<br>Assessment Factor<br>Adverse Outcome Pathway<br>(US) Agency for Toxic Substances and Disease Registry<br>Binding Occupational Exposure Limit Value<br>Competent Authority<br>Check of Compliance<br>Harmonised Classification and Labelling<br>Central Nervous System<br>Continuous Rolling Action Plan<br>Cytochrom P450<br>Exposure Assessment Models under REACH<br>Derived No Effect level<br>Direct Peptide Reactivity Assay<br>Effective Concentration/Dose<br>European Centre for Ecotoxicology and Toxicology of Chemicals<br>European Chemicals Agency<br>European Centre for the Validation oif Alternative Methods<br>Endorine Disruptor/Disruption |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EEG                                                                                                                                                           | Electroencephalogram<br>(evaluating) Member State Competent Authority                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (e)MSCA<br>ES                                                                                                                                                 | Exposure scenario                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ETEAM                                                                                                                                                         | Evaluation ofTier 1 Exposure Models (Project)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| FEP                                                                                                                                                           | Flash-Evoked Potential                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| FEV <sub>1</sub>                                                                                                                                              | Forced Expiratory Volume in one second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| FVC                                                                                                                                                           | Forced Vital Capacity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| HINT                                                                                                                                                          | Hearing In Noise Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| HMT                                                                                                                                                           | Human Maximisation Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ICCVAM                                                                                                                                                        | (US) Interagency Coordinating Committee on the Validation of Alternative<br>Methods                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| IOELV                                                                                                                                                         | Indocative Occupational Exposure Limit Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| LC/D                                                                                                                                                          | Lethal Concentration/Dose                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| LLNA                                                                                                                                                          | Local Lymph Node Assay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| LOA                                                                                                                                                           | Lower Olefins and Aromatic Services Team                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| LOAEL/C                                                                                                                                                       | Lowest Observed Adverse Effect Level/Concentration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| MRL                                                                                                                                                           | Maximum Residue Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MSCA                                                                                                                                                          | Member State Competent Authority                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| NO<br>NOAEL/C                                                                                                                                                 | Norway<br>No Observed Adverse Effect Level/Concentration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| NTP                                                                                                                                                           | (US) National Toxicology Program                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| NZW                                                                                                                                                           | New Zealand White                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| OC                                                                                                                                                            | Operational Condition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PB                                                                                                                                                            | Phenobarbital                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| PND                                                                                                                                                           | Pre-Natal Development                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PNEC                                                                                                                                                          | Predicted No Effect Concentration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| PoD                                                                                                                                                           | Point of Departure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| PROC                                                                                                                                                          | Process Category                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| QSAR                                                                                                                                                          | Quantitative Struture-Activity Relationships                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| RAAF                                                                                                                                                          | Read-Across Assessment Framework                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

| RCR  | Risk Characterisation Ratio                    |
|------|------------------------------------------------|
| SCC  | Strictly Controlled Conditions                 |
| SDS  | Sodium Dodecyl Sulfate                         |
| SE   | 1. Sweden; 2. Single Exposure                  |
| SEV  | Substance Evaluation                           |
| SI   | Stimulation Index                              |
| SPIN | Substances in Products in the Nordic Countries |
| SRT  | Simple Reaction Time                           |
| STEL | Short Time Exposure Limit                      |
| STOT | Specific Target Organ Toxicity                 |
| SWD  | Spike and Wave Discharges                      |
| TRA  | Targeted Risk Assessment                       |
| TWA  | Time-Weighted Average                          |
| UBA  | Umweltbundesamt                                |
|      |                                                |

### 7.16. Annex 1 – RAAF assessment

The ECHA Read-Across Assessment Framework or RAAF (ECHA, 2017) provides a structure for assessing read-across/category approaches when used for adaptation of standard information requirements in line with REACH Annex XI.

In a first step, the case at hand is assigned to one of six possible scenarios based on whether an analogue or a category approach is used, whether the rationale behind the read-across approach is based on different identical (e.g. one substance is a metabolite oft he other) or different substances, and whether variability in the strength with which source and target substances exert the critical effects are observed. For the case of the xylene/ethylbenzene category, the eMSCA identified RAAF scenario 4 (category approach, different substances, variations in strength of effect(s) observed among source substances prediction based on a regular pattern or worst case approach) as the most appropriate scenario.

Next, depending on which scenario was identified as the most relevant, a number of socalled assessment elements (AE) have to be adressed. AE may be common to all scenarios (C.1-C.6) or scenario-specific (in the case of scenario 4: AE 4.1-4.5). Under each assessment element, the read-across justification is examined with respect to certain assessment questions and an acceptability score from 1-5 is assigned.

| SCORES | AOs                                        | MEANING OF THE AOs                                                                                                                                                                      |
|--------|--------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5      | Acceptable with high confi-<br>dence       | Acceptance without reservations in the scientific<br>explanation and documentation addressing the<br>scientific aspects of the AE.                                                      |
| 4      | Acceptable with medium confidence          | Acceptance with minor reservations about the<br>scientific explanation and documentation ad-<br>dressing the scientific aspects of the AE.                                              |
| з      | Acceptable with just sufficient confidence | Acceptance with notable reservations. Minimum<br>level of confidence in the scientific explanation<br>provided in the documentation and addressing<br>the scientific aspects of the AE. |
| 2      | Not acceptable in its current form         | Acceptance for the AE under consideration may<br>become possible if improved explanations and/<br>or supporting evidence is made available by the<br>registrant.                        |
| 1      | Not acceptable                             | A major flaw in the approach for the AE under<br>consideration which is not expected to be re-<br>solved by the addition of supporting information.                                     |

#### Source: (ECHA, 2017)

Once this assessment has been completed for all AEs, the lowest score obtained in any of the elements determines the overall score, with a minimum score of 3 required for acceptance. Notably the scoring system is tailored to the needs of dossier evaluation which differ from those under SEv. This is particularly relevant for cases at the border between overall scores 3 (just acceptable with minimum level of confidence) and 2 (not acceptable in the present form, but acceptance may be possible with improved explanations): Where read-across justifications are rated with an overall score of 2, ECHA may under dossier evaluation ask for an update of the read-across justification, whereas subject to Article 50 (4), the eMSCA under SEv may only do so, if a specific risk-driven concern is present. As described in more detail in section 7.9.10 above, in the case of the xylene/ethylbenzene category, the eMSCA concluded that the category justification submitted by the registrants is currently insufficient, while the rationale as such appears plausible when looking at the overall data matrix.

As a consequence, the eMSCA has assigned an overall score of 2 to the RAAF-based evaluation and recommended that ECHA under Dossier Evaluation requests an update of the -xylene/ethylbenzene category from the registrants. The scores obtained for the individual AEs are reported in Table 35.

#### Table 35

| RAAF ASSESSMENT OF THE REGISTRANTS' JUSTIFICATION FOR THE<br>XYLENE/ETHYLBENZENE CATEGORY                          |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|--------------------------------------------------------------------------------------------------------------------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Assessment<br>Element                                                                                              | Score | Justification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|                                                                                                                    |       | Common Assessment Elements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| C.1 Substance<br>characterisation                                                                                  | 2     | Levels of constituents and impurities in registered substances and test substances<br>used in experimental studies are not discussed in the registrants' justification of<br>the read-across approach. Xylene of different composition has been used in the<br>studies, and impurities in the technical material may include toluene. From a<br>synopsis of the available data matrix the eMSCA concludes that a significant impact<br>on toxicity appears unlikely, therefore appropriate discussion and documentation<br>of these issues by the registrants could likely raise the score to at least 3.                                                                                         |  |
| C.2 Structural<br>similarity and<br>structural<br>differences<br>within the<br>category                            | 2     | Common structural features are addressed by the registrants in their justification<br>of the read-across approach, but dissimilarities (e.g. different substitution pattern<br>leading to differences in molecular size) are not. However, the eMSCA did not find<br>an indication that these differences lead to a qualitative difference in biological<br>activity, therefore appropriate discussion and documentation of these issues by the<br>registrants could likely raise the score to at least 3.                                                                                                                                                                                        |  |
| C.3 Link of<br>structural<br>similarities and<br>structural<br>differences with<br>the proposed<br>regular pattern | 2     | Not discussed in the read-across justification submitted by the registrants, but the observed effects are well in line with knowledge about alkylbenzenes, and beside the benzene ring, all of the category members only contain methyl or ethyl groups. As a result, the eMSCA finds that appropriate discussion and documentation of these issues by the registrants could likely raise the score to at least 3.                                                                                                                                                                                                                                                                                |  |
| C.4 Consistency<br>of effects in the<br>data matrix                                                                | 2     | Not discussed in the read-across justification submitted by the registrants, only an incomplete data matrix is presented. However, based on the assessment of the data matrix by the eMSCA, it appears likely that appropriate discussion and documentation of these issues by the registrants could raise the score to at least 3.                                                                                                                                                                                                                                                                                                                                                               |  |
| C.5 Reliability<br>and adequacy<br>of the source<br>studies                                                        | 2     | Not discussed in the read-across justification submitted by the registrants, but eMSCA is of the opinion that overall the available toxicological data base is of sufficient quality to allow for a reliable risk characterisation of the xylene isomers. Therefore it appears likely that appropriate discussion and documentation of this point by the registrants could raise the score to at least 3.                                                                                                                                                                                                                                                                                         |  |
| C.6 Bias that<br>influences the<br>prediction                                                                      | 2     | Not discussed in the read-across justification submitted by the registrants. There<br>is indeed an apparent issue with regard to selection bias, as e.g. toluene, diethyl-<br>or trimethylbenzenes have not been included in the category. The rationale for<br>this is unclear and needs to be provided by the registrants. On the other hand,<br>data on diethyl- and trimethylbenzenes available from the ECHA dissemination site<br>do not provide an indication that their inclusion would have changed the overall<br>assessment result. Therefore it appears likely that appropriate discussion and<br>documentation of this point by the registrants could raise the score to at least 3. |  |
|                                                                                                                    |       | Scenario-specific Assessment Elements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| 4.1 Compounds<br>the organism is<br>exposed to                                                                     | 2     | Not discussed in the read-across justification submitted by the registrants. Notably the individual xylene isomers are metabolised to different methylhippuric acids. On the other hand, from a synopsis of the available data matrix the eMSCA concludes that a significant impact on toxicity appears unlikely, therefore appropriate discussion and documentation of these issues by the registrants could likely raise the score to at least 3.                                                                                                                                                                                                                                               |  |
| 4.2 Common<br>underlying<br>mechanism,<br>qualitative<br>aspects                                                   | 2     | Not discussed in the read-across justification submitted by the registrants, but the observed effects are well in line with common knowledge about the toxicity of alkylbenzenes. As a result, the eMSCA finds that appropriate discussion and documentation of these issues by the registrants could likely raise the score to at least 3.                                                                                                                                                                                                                                                                                                                                                       |  |
| 4.3 Common<br>underlying<br>mechanism,<br>quantitative<br>aspects                                                  | 2     | Not discussed in the read-across justification submitted by the registrants. On a quantitative basis, some differences are observed between the three isomers, however a clear trend was not observed and ethylbenzene and to some degree, dose selection may be responsible for this observation (many older studies did not establish a NOAEC or LOAEC). One exception is given by ototoxicity, for which the available data show that p-xylene is much more potent than o- or m-xylene (however they not allow to conclude that these two isomers could not be ototoxic                                                                                                                        |  |

| XYLENE/EIHYL                                                                                    | XYLENE/ETHYLBENZENE CATEGORY |                                                                                                                                                                                                                                                                                                                   |  |  |  |
|-------------------------------------------------------------------------------------------------|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Assessment<br>Element                                                                           | Score                        | Justification                                                                                                                                                                                                                                                                                                     |  |  |  |
|                                                                                                 |                              | at high doses > 1800 ppm). Overall, appropriate discussion and documentation of these issues by the registrants could likely raise the score to at least 3.                                                                                                                                                       |  |  |  |
| 4.4 Exposure to<br>other<br>compounds<br>than those<br>linked to the<br>prediction              | 2                            | Not discussed in the read-across justification submitted by the registrants. Cf. AEs C.1 and 4.1. Overall, appropriate discussion and documentation of these issues by the registrants could likely raise the score to at least 3.                                                                                |  |  |  |
| 4.5 Occurrence<br>of other effects<br>than covered by<br>the hypothesis<br>and<br>justification | 2                            | Not discussed in the read-across justification submitted by the registrants. An evaluation of the data matrix by the eMSCA did, however not provide indications of such effects. Overall, appropriate discussion and documentation of these issues by the registrants could likely raise the score to at least 3. |  |  |  |

# RAAF ASSESSMENT OF THE REGISTRANTS' JUSTIFICATION FOR THE XYLENE/ETHYLBENZENE CATEGORY