

Substance Name: Bis(2-ethylhexyl) phthalate (DEHP)

EC Number: 204-211-0

CAS Number: 117-81-7

MEMBER STATE COMMITTEE

SUPPORT DOCUMENT FOR IDENTIFICATION OF

BIS(2-ETHYLHEXYL) PHTHALATE (DEHP)

AS A SUBSTANCE OF VERY HIGH CONCERN BECAUSE OF ITS ENDOCRINE DISRUPTING PROPERTIES WHICH CAUSE PROBABLE SERIOUS EFFECTS TO THE ENVIRONMENT WHICH GIVE RISE TO AN EQUIVALENT LEVEL OF CONCERN TO THOSE OF CMR¹ AND PBT/vPvB² SUBSTANCES

DISCLAIMER: The content for this decision has only been agreed unanimously by the MSC as regards its content relating to the environment.

ADOPTED ON 11 DECEMBER 2014

¹CMR means carcinogenic, mutagenic or toxic for reproduction

² PBT means persistent, bioaccumulative and toxic; vPvB means very persistent and very bioaccumulative

CONTENTS

1	IDE	NTITY OF THE SUBSTANCE AND PHYSICAL AND CHEMICAL PROPERTIES4
	1.1 1.2 1.3	NAME AND OTHER IDENTIFIERS OF THE SUBSTANCE 4 COMPOSITION OF THE SUBSTANCE 4 PHYSICO-CHEMICAL PROPERTIES 5
2	HAR	MONISED CLASSIFICATION AND LABELLING6
3	ENV	IRONMENTAL FATE PROPERTIES7
	3.1 3.2 3.3 3.4	ENVIRONMENTAL FATE
4 C		MAN HEALTH HAZARD ASSESSMENT (ONLY INCLUDED FOR INFORMATION AS IT N INFORMATION RELEVANT FOR WILDLIFE)
	4.1 4.2 4.2. 4.2. 4.2. 4.2.	TOXICOKINETICS (ABSORPTION, METABOLISM, DISTRIBUTION AND ELIMINATION) 8 OTHER EFFECTS: ENDOCRINE DISRUPTION 9 1 General approach 9 2 Adverse health effects - Analysis of available information from rodent studies.10 15 3 Endocrine mode of action 15 4 Plausible link between adverse effects and endocrine mode of action 16
5		IRONMENTAL HAZARD ASSESSMENT
	5.1 5.1. 5.1. 5.1. 5.1. 5.1.	 2 Effects in the aquatic compartment (including sediment)
6	CON	CLUSIONS ON THE SVHC PROPERTIES
	6.1 6.2 6.3	CONCLUSION ON FULFILMENT OF WHO DEFINITION OF ENDOCRINE DISRUPTOR
R	EFEREN	ICES
A	NNEX 1	- DEHP. STUDIES CONSIDERED MOST IMPORTANT IN EU RAR 2008

TABLES

Table 1: Substance identity	4
Table 2: Overview of physicochemical properties	
Table 3. Summary of studies <i>in vivo</i> showing adverse effects and/or showing an <i>in vivo</i> endocrine mo of action.	
Table 4. Key studies on effects of DEHP on wildlife including endpoints relevant for the assessment of	f
endocrine disrupting effects from the EU risk assessment report for DEHP (2008)	20

Substance Name(s): Bis(2-ethylhexyl) phthalate (DEHP)

EC Number(s): 204-211-0

CAS number(s): 117-81-7

 Bis(2-ethylhexyl) phthalate (DEHP) is identified as a substance of equivalent level of concern to those of other substances listed in points (a) to (e) of Article 57 of Regulation (EC) No 1907/2006 (REACH) according to Article 57(f) of REACH Regulation.

Summary of how the substance meets the criteria set out in Article 57 of the REACH Regulation

Bis(2-ethylhexyl) phthalate (DEHP) is identified as a substance of very high concern in accordance with Article 57(f) of Regulation (EC) 1907/2006 (REACH) because it is a substance with endocrine disrupting properties for which there is scientific evidence of probable serious effects to the environment which give rise to an equivalent level of concern to those of other substances listed in points (a) to (e) of Article 57 REACH.

DEHP has been shown to adversely affect the endocrine system of mammals primarily through *in vivo* findings on reduced fetal testosterone. These findings are further substantiated by mechanistic findings, also *in vivo*, of down-regulation of genes in the steroidogenic biosynthesis pathway. The spectrum of effects observed in male rats include increased incidence of nipple retention and genital malformations, decreased anogenital distance, reduced number of spermatocytes and testicular changes including multinucleated gonocytes, tubular atrophy and Leydig cell hyperplasia of which almost all are considered adverse (OECD 2008).

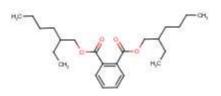
In relation to the environment, adverse effects concerning development and reproduction are generally regarded as endpoints of particular relevance because such effects are likely to manifest themselves at the population level. The effects observed in rats are of particular concern for mammalian wildlife species with a natural low reproductive output (including endangered species) as negative effects on reproduction has an even higher potential for causing long term negative effect at the population level for such taxa.

Adverse effects caused by exposure to DEHP have also been identified in non-mammalian wildlife where the sex ratio and reproductive output was affected in fish. Furthermore, several studies in fish indicate that DEHP has an estrogenic MoA which may cause the sex reversal of male fish to female fish and / or affect the reproductive output. Hence the current data indicates also in fish that DEHP has endocrine disruptive properties leading to adverse effects related to sexual development and reproduction.

In conclusion, when available information from mammalian and ecotoxicological studies are combined, DEHP can be considered an endocrine disruptor for the environment as it fulfils the WHO/IPCS definition of an endocrine disruptor and the recommendations from the European Commission's Endocrine Disrupters Expert Advisory Group for a substance to be identified as an endocrine disruptor.

DEHP is considered as a substance giving rise to an equivalent level of concern because scientific evidence shows that exposure during sensitive time windows of development may cause irreversible developmental programming effects leading to severe effects on development and reproduction, regarded as particularly serious in relation to wildlife species, also because these adverse effects may first manifest themselves in later life stages as a consequence of exposure during early life stages. Adverse effects on development and reproduction are in addition generally regarded as population relevant endpoints of concern, and as such frequently used for regulatory hazard and risk assessment for environmental species.

Registration dossiers submitted for the substance: Yes


1 Identity of the substance and physical and chemical properties

1.1 Name and other identifiers of the substance

EC number:	204-211-0
EC name:	Bis(2-ethylhexyl) phthalate
CAS number (in the EC inventory):	117-81-7
CAS number:	117-81-7
CAS name:	1,2-Benzenedicarboxylic acid, bis(2-ethylhexyl) ester
IUPAC name:	Bis(2-ethylhexyl) phthalate
Index number in Annex VI of the CLP Regulation	607-317-00-9
Molecular formula:	C ₂₄ H ₃₈ O ₄
Molecular weight range:	390.6 g/mol
Synonyms:	DEHP

Table 1: Substance identity

Structural formula:

1.2 Composition of the substance

Name: DEHP

Description: DEHP is a well-defined substance containing all possible stereoisomers as main constituents.

1.3 Physico-chemical properties

Property	Value	IUCLID section	REACH ref Annex, §
Physical state at 20°C and 101.3 kPa	Colourless oily liquid	3.1	VII, 7.1
Melting/freezing point	-55C or -50C	3.2	VII, 7.2
Boiling point	385C at 1013 hPa	3.3	VII, 7.3
Vapour pressure	0.000034 Pa at 20C	3.6	VII, 7.5
Water solubility	3ug/l at 20C	3.8	VII, 7.7
Partition coefficient n- octanol/water (log value)	7.5	3.7	VII, 7.8
Dissociation constant	-	3.21	XI, 7.16
	4.43 Pa m3/mol		
Henry's constant			

Table 2: Overview of physicochemical properties

2 Harmonised classification and labelling

DEHP is listed in Regulation (EC) No 1272/2008 as follows:

Classification and labelling of DEHP according to Annex VI, Table 3.1 of Regulation (EC) No 1272/2008

Index No	International Chemical Identification	EC No	CAS No	Classification Labelling			Specific Conc. Limits, M-	
				Hazard Class and Category Code(s)	Hazard Statement Code(s)	Pictogram, Signal Word Code(s)	Hazard statement Code(s)	factors
607- 317- 00-9	bis(2- ethylhexyl) phthalate; di- (2-ethylhexyl) phthalate; DEHP	204- 211- 0	117- 81-7	Repr. 1B	H360FD	GHS08 Dgr	H360FD	

Classification and labelling of DEHP according to Annex VI, Table 3.2 of Regulation (EC) No 1272/2008 (The list of harmonized classification and labelling of hazardous substances from Annex I to Directive 67/548/EEC)

Index No	International Chemical Identification	EC No	CAS No	Classification	Labelling	Concentration limits
607-317- 00-9	bis(2- ethylhexyl) phthalate; di- (2-ethylhexyl) phthalate; DEHP	204-211-0	117-81-7	Repr. Cat. 2; R60-61	T R: 60-61 S: 53-45	

3 Environmental fate properties

3.1 Environmental fate

The environmental fate of DEHP as concluded in the Summary risk assessment report for DEHP for degradation, distribution and bioaccumulation is cited in the sections below (JRC 2008).

"Release of DEHP to the environment occurs during production, transport, storage, formulation and processing of PVC and non-polymers. Furthermore, plasticisers are not chemically bound to the matrix polymer in flexible PVC (or other materials). Therefore the plasticiser will to some extent be lost from the finished article during its use and after its final disposal. DEHP enters the environment mainly via direct releases to air and waste water, from sewage sludge and from solid waste. In air, DEHP may occur both in vapour phase and as solid particles. The nature of these particles can be either aggregated pure DEHP or polymer particles containing DEHP. Particles formed by weathering of polymer products probably represent an important route of DEHP distribution. It is estimated that around 800 industrial sites in EU use DEHP or preparations containing DEHP. Releases from these sources are expected to cause higher local exposure" Cited from JRC 2008.

3.2 Degradation

"Photo degradation of DEHP (reaction with OH radicals) is important in the atmosphere ($T_{1/2} = 1 \text{ day}$) but is assumed to be of little importance in water and soil. DEHP does not hydrolyse in water. The biodegradation of DEHP is varying in available studies. Based on the results of standard biodegradation test DEHP is readily biodegradable. Experimental data indicates a biodegradation half-life for DEHP in surface water of 50 days, and 300 days in aerobic sediment. Anaerobic conditions and low temperature further reduce the degradation rate. Results from degradation studies of DEHP in agricultural soil are variable, but indicate moderate to low biodegradation rates. MEHP is the primary biodegradation product of DEHP." cited from JRC 2008.

3.3 Distribution

"With a log Kow of 7.5, DEHP is expected to be strongly adsorbed to organic matter. DEHP is therefore expected to be found in the solid organic phase in the environment. The log Koc for DEHP is 5.2 L/kg. Hence, DEHP will be strongly adsorbed to the sludge in sewage treatment plants. DEHP has a vapour pressure of 3.4 x 10-5 Pa (at 20 to 25°C), which indicate a low evaporation rate from its pure state, and a Henry's law constant of 4.4 Pa m³/mol, indicating a moderate evaporation from a pure water solution ('semi-volatile')." cited from JRC 2008.

3.4 Bioaccumulation

"DEHP is found to bioaccumulate in aquatic organisms, and the highest BCF values are observed for invertebrates e.g. 2,700 for Gammarus (BCF fish 840). This indicates that uptake via the food chain might be an important exposure route (secondary poisoning). BCF, as well as monitoring data for different trophic levels, indicate that DEHP does not bio-magnify. This may in part be due to a more effective metabolisation rate in higher organisms. Due to its high affinity to organic matter only a limited bioaccumulation of DEHP in plants is expected. The environmental studies confirm this with BCF ranging between 0.01 and 5.9.

For earthworms a BCF of 1, based on experimental results and modelled (EUSES) data, has been used in the risk assessment. "Cited from JRC 2008.

4 Human health hazard assessment (only included for information as it contain information relevant for wildlife)

4.1 Toxicokinetics (absorption, metabolism, distribution and elimination)

The toxicokinetics as described in the EU RAR of DEHP has been summarized and discussed by the ECHA Member State Committee in 2008 (ECHA 2008):

"Generally, DEHP is rapidly absorbed from the gastrointestinal tract following oral administration. The extent of absorption in rats is around 50% for doses up to about 200 mg/kg bw. At higher doses, it appears that absorption in non-human primates is dose-limited in contrast to rodents. For humans, information is not, however, available concerning the dependency of oral uptake on dose. Also, the extent of oral absorption at doses which humans are expected to be exposed is not known. Absorption may be 100% at daily exposure levels. Limited data on toxicokinetics, following inhalation or dermal exposure, indicate that DEHP can be absorbed through the lungs whereas absorption through the skin appears to be limited. Following intra peritoneal injection most of the administered dose remains in the peritoneal cavity.

Distribution studies in rat indicate that DEHP is widely distributed in the body without evidence of accumulation in the tissues in rats. A comparative study of rats and marmosets showed similar distribution patterns in the two species (oral administration) whereas rats had higher tissue levels than marmosets. Thus, the difference in distribution between species is quantitative rather than qualitative.

The metabolism of DEHP involves several pathways and yields a variety of metabolites. The major step in the metabolism of DEHP is hydrolysis by lipases to MEHP (mono(2-ethylhexyl)phthalate) and 2-ethylhexanol, which is common to all investigated species. MEHP is a relatively major component in urine of monkeys, guinea pigs and mice but was in most cases not detected in rat urine. However, MEHP is present in plasma in all species tested. The substance is excreted via the urine, mainly as MEHP-metabolites, but some excretion via bile also occurs in rodents. The elimination of DEHP largely depends on its metabolism and it might take 5-7 days to eliminate 80% of the DEHP administrated. The half-life for DEHP and its metabolites was 3-5 days in the adipose tissue and 1-2 days in the liver. The elimination is most rapid in rats. In the DEHP data base, it has been observed that the oral absorption of DEHP to some extent is age dependent, and the EU RAR is concluding on oral absorption percentages of 100 % in young animals and 50 % in adult animals.

DEHP can cross the placenta barrier and distribute into foetal tissues. In addition, DEHP can be transferred through the milk from lactating rats to their pups. Since the immature liver may have a lower metabolising capacity than that of adults, new-borns and foetuses might be especially vulnerable to exposure to DEHP and MEHP."

The oral absorption fraction of adults was adjusted to 70% by the ECHA Risk Assessment Committee in 2011 and RAC confirmed the EU RAR absorption percentages of 5% for dermal absorption and inhalatory absorption percentages of 75% for adults and 100% for children (ECHA 2012).

The toxicokinetics as described in the EU RAR for human health is cited below (EU RAR 2008): "DEHP is readily absorbed and distributed in the body, but there is no evidence of accumulation. The metabolism of DEHP involves several pathways and yields a variety of metabolites. The major step in the metabolism of DEHP is hydrolysis by lipases to MEHP

(mono(2-ethylhexyl)phthalate) and 2-ethylhexanol. The substance is excreted via the urine, mainly as MEHP-metabolites, but some excretion via bile also occurs in rodents.

Additionally, there are animal and human data showing that DEHP is transferred to mothers' milk. The relative extent to which different metabolites are produced and excreted is very complex and may depend upon the species, the age of the animal, sex, inter-individual differences, nutrition state, prior exposure to DEHP, the amount of DEHP administered, and the route of administration."

4.2 Other effects: Endocrine disruption

4.2.1 General approach

Criteria on how to assess whether or not a substance has endocrine disrupting properties and/or is an endocrine disruptor are currently being developed in the European Union.

The basis for the criteria is envisaged to be the widely accepted definition of an endocrine disruptor by the WHO/IPCS (WHO/International Programme on Chemical Safety 2002):

An endocrine disruptor is an exogenous substance or mixture that

- 1) alters function(s) of the endocrine system and
- 2) consequently causes

3) adverse health effects in an intact organism, or its progeny, or (sub)populations.

The European Commission's Endocrine Disrupters Expert Advisory group agreed in 2013 "that the elements for identification of an endocrine disrupter were demonstration of an adverse effect for which there was convincing evidence of a biologically plausible causal link to an endocrine disrupting mode of action and for which disruption of the endocrine system was not a secondary consequence of other non-endocrine-mediated systemic toxicity." (JRC 2013)

As it is assumed in this report that a substance should fulfil the recommendations from the European Commission's Endocrine Disrupters Expert Advisory group outlined above in order to be identified as an endocrine disruptor, available information is assessed based on the following topics:

- 1) Adverse health effects
- 2) Endocrine mode of action
- 3) Plausible link between adverse effects and endocrine mode of action
- 4) Human relevance

In relation to effects on wildlife (the environment) the above mentioned topic 4) human relevance is replaced with "environmental relevance" (see section "5.1.1 General approach – Environment").

The most marked adverse effects of DEHP have been described for the male reproductive system and most work performed to elucidate the mode of action of DEHP has been carried out in experimental tests studying developing male rats. The following discussion therefore focuses on adverse effects on male reproduction induced by inhibition of steroid synthesis in fetal testis. DEHP may also have other endocrine disrupting modes of action. Although data on these modes of action are sparse, data on estrogenic action and thyroid disruption will be discussed briefly here to give a complete overview of the possible endocrine disrupting modes of action of DEHP.

4.2.2 Adverse health effects - Analysis of available information from rodent studies

a) Background

DEHP is classified as a substance toxic to reproduction (Repr. 1B, H360FD) based on evidence of adverse effects on the reproductive organs in adult and developing rodents. The spectrum of effects observed in male rats include increased incidence of nipple retention and genital malformations, decreased anogenital distance, reduced number of spermatocytes and testicular changes including multinucleated gonocytes, tubular atrophy and Leydig cell hyperplasia of which almost all are considered adverse (OECD 2008). The evidence of reproductive toxicity indicative of an anti-androgenic endocrine disrupting mode of action was described as follows in the EU risk assessment report from 2008 (EU RAR, 2008):

"Available data demonstrate that exposure to DEHP affects both fertility and reproduction in rodents of both sexes and also produces developmental effects in offspring. In males, DEHP induces severe testicular effects, including testicular atrophy. (...) Irreversible effects occur in rats exposed prenatally and during suckling (Arcadi et al., 1998). (...) Both *in vivo* and *in vitro* study results indicate that DEHP can interfere with the endocrine function and also influence the sexual differentiation (e.g. Gray et al., 1999 and Jones et al., 1993). Due to the effects on the Leydig cells as measured by a decreased testosterone output, it cannot be excluded that DEHP may exert an antiandrogen effect. The results of recently performed *in vivo* studies in rats exposed to DEHP or DBP support the hypothesis that exposure to phthalates may be provoked by an antiandrogen mechanism (Gray et al., 1999, Mylchrest and Foster, 1998)."

Here, "antiandrogenic mechanism" is used to describe a reduced activation of the androgen receptor. For some chemicals, this is achieved by antagonism of the androgen receptor, but for DEHP and other phthalates the reduced activation of the androgen receptor is caused by interference with steroid hormone synthesis, as will be discussed below. In addition to the studies by Gray et al., 1999 and Jones et al., 1993, other studies included in the EU risk assessment report (EU RAR, 2008) showed effects related to endocrine disruption, e.g. increased nipple retention in male pups (Schilling et al. 1999). Nipple retention in male pups is generally known to be associated with an anti-androgenic mode of action (Imperato-McGinley et al. 1985 and Imperato-McGinley et al. 1986, Wolf et al., 1999), and the findings by Schilling et al. (1999) thus strengthens the hypothesis of DEHP as an endocrine disruptor.

The reproductive toxicity of DEHP was thus evaluated to be likely induced via an endocrine disrupting mode of action, i.e. interference with steroid hormone synthesis. This conclusion is further substantiated by studies carried out after the publication of the EU risk assessment report for DEHP (see below).

Furthermore, the EU risk assessment report from 2008 (EU RAR, 2008) highlighted that monoester metabolites of DEHP, such as MEHP, may be important in relation to the reported adverse effects: "MEHP is believed to be the active metabolite of DEHP affecting testes and reproductive functions both *in vivo* and *in vitro*. The possible role of other metabolites is, however, not fully elucidated."

An overview of the key studies on effects of DEHP on reproduction and development were given in the EU risk assessment report for DEHP (2008) and are presented in the table in Annex 1 to this report. These studies are considered reliable (i.e. in most cases with a Klimisch score 1 or 2). Detailed study summaries can be found in the EU risk assessment report.

b) Adverse effects indicative of endocrine disruption

Several studies on reproductive and endocrine effects of DEHP *in vivo* have been published since data was collected for the EU risk assessment report. Key studies showing adverse effects and/or showing an *in vivo* endocrine mode of action of DEHP are summarized in table 3 below or can be found in Annex I (studies described in the EU risk assessment report).

The studies included in table 3 are generally evaluated as reliable (Klimisch score 1 or 2). The reliability of a few of these studies are evaluated as somewhat limited, because they use a rather low number of animals and only one dose level (Gazouli et al., 2002; Parks et al., 2000; Wilson et al., 2004), but these studies have anyway been included in the overview table because the findings of these studies in general are accordance with the more comprehensive studies shown in the table and hence can be used as supportive evidence. Overall, the dataset is evaluated as very reliable due to the consistency of the findings with regards to both the adverse effects and the mode of action.

Table 3. Summary of studies in vivo showing adverse effects and/or showing an in vivo endocrine	mode
of action.	

Species,	Protocol	Results	Reference					
strain and number of animals								
Studies showing adverse effects in vivo								
Rat, Wistar, n=11 to 16 litters per dose	Pregnant rat dams gavaged from GD 6 to PND 21 (in utero and lactational exposure) with 0, 0.015, 0.045, 0.135, 0.405, 1.215, 5, 15, 45, 135 and 405 mg DEHP/kg bw/day.	Effects on daily sperm production from 15 mg/kg bw/day and a low, but increased incidence of cryptorchidism at 5 mg/kg bw/day. Effects on hormone levels were seen at low doses, but did not exhibit monotonic dose-response relationships. In males exposed to 1.215 mg/kg bw/day and at doses from 15 mg/kg bw/day and above (i.e. not at 5 mg/kg bw/day), daily sperm production was reduced compared to controls from the same study and compared to historical controls. The authors concluded a LOAEL of 15 mg/kg bw/day for this effect. Three animals exposed to 5, 135, and 405 mg/kg bw/day of DEHP, respectively, had undescended testes (chryptorchidism). The authors concluded a NOAEL of 1.215 mg/kg bw/day based on cryptorchidism despite the low number of affected animals, as chryptorchidism is less common in Wistar rats compared to other rat strains.	Andrade et al., 2006					
Rat, Long- Evans, n=12 dams/group	Pregnant rat dams exposed via drinking water from GD 1 to PND 21to DEHP at doses corresponding to 3-3.5 and 30-35 mg/kg bw/day. Organ weights of pups were determined at 21, 28, 35, 42 and 56 days after birth.	Significant decreases in absolute weights of testes and kidneys and an increased relative liver weight were seen at all examined ages and at both doses. Histological changes in testes, kidney and liver were observed. In testes, disorganization of seminiferous epithelium and testicular atrophy was seen already at 3 weeks of age at both doses of DEHP, whereas the normal testicular maturation occurring in controls from 5 weeks of age was absent or delayed in exposed animals at both doses of DEHP.	Arcadi et al., 1998					
Rat, Wistar, n = 8-16 dams/ group	Pregnant rat dams, gavaged from GD 7 to PND 16. Two studies: Study 1 included 16 mated dams in the control group and 8 mated dams per group in six exposure groups receiving 10, 30, 100, 300, 600 or 900 mg/kg bw/day of DEHP. Study 2 included 16 mated dams in the control	The critical effect of the combined evaluation of the two studies were effects on anogenital distance and nipple retention in males, as the anogenital distance was significantly decreased and the number of nipples significantly increased at 10 mg/kg bw/day of DEHP with a NOAEL of 3 mg/kg bw/day. At the same dose (10 mg/kg) and above, decreased weights of ventral prostate and levator ani/bulbocavernosus muscle were observed, though these effects did not show a clear dose-response relationship. The findings in the study by Christiansen et al. (2010), is considered acceptable and supports the findings by Wolfe & Layton (2003).	Christiansen et al., 2010					

Species,	Protocol	Results	Reference
strain and			
number of animals			
	group, 16 mated		
	dams receiving 3		
	mg/kg bw/day of DEHP, and 8 mated		
	dams per group		
	receiving either 10,		
	30, or 100 mg/kg		
	bw/day of DEHP. A		
	number of reproductive		
	endpoints were		
	investigated		
	postnatally and at		
Rats,	PND 16. Pregnant rats	Reproductive effects including nipple retention and	Gray et al.,
Sprague-	gavaged GD 14 to	genital malformations were seen in male rats	2000
Dawley, n =	PND 3 with 0 or 750	exposed perinatally to 750 mg/kg bw/day of	
5-10	mg/kg bw/day of	DEHP, BBP or DINP, but not in those exposed to	
dams/group in each block	DEHP, BBP, DINP, DEP, DMP or DOTP.	750 mg/kg bw/day of DEP, DMP or DOTP. DEHP and BBP exposed males also had reduced	
In cach block		anogenital distance.	
	ing an endocrine <i>in vi</i>	vo mode of action	
Rat, Long-	Pregnant or nursing	Serum T and LH levels were significantly reduced	Akingbemi
Evans. Dams n=7,	rats dams gavaged with 100 mg/kg bw/	in male offspring, compared to control at the dose tested (100 mg/kgbw/day), at 21 and 35 days of	et al., 2001
prepubertal	day of DEHP from GD	age, but not at 90 days of age.	
rats n= 10,	12 to GD 21or PND1	In peripubertalrats gavaged with DEHP for 14 days	
adult rats n	to PND 21.	from PND 21 or 35, steroidogenesis was reduced	
= 10	Or peripubertal rats were gavaged PND	at 10 (from PND 34 only), 100 and 200 mg/kg bw/day DEHP as seen by decreased testosterone	
	21 to 34 (14 days) or	production <i>ex vivo</i> and decreased activity of	
	PND 35 to 48 (14	steroidogenic enzymes. In peripubertal rats	
	days) or PND 21-48 (28 days) with 0, 1,	exposed for 28 days from PND 21, increased testosterone production was seen at 10, 100 and	
	10, 100, or 200	200 mg/kg bw/day DEHP, No effects on serum	
	mg/kg bw/day of	testosterone or testosterone production ex vivo	
	DEHP.	were seen with exposure from PND 62 to 89. It	
	Or adult rats were gavaged PND 62 to	was concluded that DEHP effects on Leydig cell steroidogenesis are influenced by the stage of	
	89 with 0, 1, 10,	development at exposure and may occur through	
	100, or 200 mg/kg	modulation of T-biosynthetic enzyme activity and	
Dat Wistor	bw/day of DEHP.	serum LH levels	Porch at al
Rat, Wistar, n = 8 dams/	Pregnant rats gavaged from GD 7	DEHP and DINP reduced testicular testosterone production ex vivo and testicular testosterone	Borch et al., 2004
group	to 21 with 300 or 750	content in fetal males and DEHP also reduced	_00.
	mg/kg bw/day of	plasma testosterone levels, increased plasma LH	
	DEHP, or 750 mg/kg bw/day of DINP, or a	levels. DEHP reduced anogenital distance of male pups at GD 3 and increased the number of nipples	
	combination of DINP	in males at pup day 13.	
	and diethylhexyl	· · · · · · · · · · · · · · · · · · ·	
	adipate (DEHA) (750		
	+ 400 mg/kg bw/day) or a		
	combination of DEHP		
	and DINP (300 and		
	750 mg/kg bw/day).		
	One group of offspring were		
	examined at GD 21,		
	examined at GD 21,		

Species,	Protocol	Results	Reference
strain and number of animals			
	and another group of offspring was kept for analysis of anogenital distance at PND 3 and determination of nipple retention at PND 13.		
Rat, Wistar, n = 8 dams/group	Pregnant rats dams gavaged from GD 7 to 21 with 10, 30, 100 or 300 mg/kg bw/day of DEHP. Male fetuses were examined at GD 21.	In DEHP exposed males, reduced testicular testosterone production ex vivo and testicular testosterone content was reduced at the highest dose. At the two highest doses, histological changes were seen in testes (multinucleated gonocytes, increased diameter of chords with a larger number of gonocytes) and clustering of Leydig cells was seen at the highest dose. The intensity of immunostaining for StAR, PBR and P450scc was reduced in Leydig cells of DEHP exposed rats compared to controls and corresponded with reduced mRNA levels of StAR, PBR, P450scc and SR-B1 indicating downregulation of steroidogenic pathways	Borch et al., 2006.
Mouse, SV129 wild- type and PPARa(-/-)- null, n = 4	Male mice, 7 days gavage with 1 g/kg bw/day of DEHP.	DEHP reduced circulating testosterone and mRNA levels of PBR (peripheral-type benzodiazepine receptor), which is involved in cholesterol uptake. As the same effects were not seen in PPARalpha- null mice, it was suggested that the influence on PBR gene expression in Leydig cells is PPARalpha dependent.	Gazouli et al., 2002
Rat, Sprague- Dawley, n = 3-4 dams/group	Pregnant rats, gavage GD 14 to 18 with 0, 100, 300, 500, 625, 750 or 875 mg DEHP /kg bw/day.	Testicular testosterone production ex vivo was assessed by incubation of testes of 18 day old fetuses for 3 hours and testosterone measurement in the media. Despite differences in testosterone production values in the two strains, the same response was seen, i.e. a decrease in testosterone production at 300 mg/kg bw/day and above with a NOAEL of 100 mg/kg bw/day.	Hannas et al., 2011
Rat, Sprague- Dawley, n = 5 to 8 dams/group	Pregnant rats gavaged GD 8 to 18 with 0, 100, 300, 600, or 900 mg/kg bw/day of DEHP, BBP, DEP or DIBP or 33, 50, 100, 300 or 600 mg/kg bw/day DBP or 25, 50, 100, 200, 300 or 600 mg/kg bw/day DPP.	DEHP decreased fetal testosterone production in rats at doses from 300 mg/kg bw/day (NOAEL 100 mg/kg bw/day). Testicular testosterone production ex vivo was assessed by incubation of testes of 18 day old fetuses for 3 hours and testosterone measurement in the media. Dose-related decreases in testosterone production was seen for DEHP and the other tested phthalates (BBP, DBP, and DIBP) from 300 mg/kg bw/day and above, and for DPP (dipentyl phthalate) from 100 mg/kg bw/day	Howdeshell et al., 2008
Rat, Sprague- Dawley, n = 4-5	Neonatal male rats gavaged with a single dose of DEHP (20, 100, 200 or 500 mg/kg), MEHP (monoethylhexyl phthalate, 393 mg/kg) or 2-EH (2- ethylhexanol, 167 mg/kg) on PND 3. Diethyl phthalate (DEP, 500 mg/kg	24 hours after exposure, multinucleated gonocytes were seen in testes of DEHP and MEHP exposed animals, but not in testes of 2-EH-exposed or unexposed animals. Reduced Sertoli cell proliferation was seen in DEHP exposed animals compared to controls, while no reduction in Sertoli cell proliferation was seen for DEP. These findings indicate that effects of DEHP can be attributed to the metabolite MEHP.	Li et al., 2000

Species, strain and number of animals	Protocol	Results	Reference
Rat, Sprague- Dawley, n = 10 (control) and 5 (exposed) dams/ group	bw/day) was used as a negative control. Pregnant rat dams gavaged from GD 12 to 19 with DEP, DMP, DOTP, DBP, DEHP, DPP or BBP at 500 mg/kg bw/day. Gene expression analysis in testes was performed at GD 19.	The effects of DBP, BBP, DPP and DEHP on global gene expression were similar, whereas no change in gene expression was detected for DMP, DEP and DOTP. The affected gene pathways involved cholesterol transport, steroidogenesis, lipid and cholesterol homoeostasis, insulin signaling, transcription regulation, oxidative stress and cell- cell communication. These findings clarify that DBP, BBP, DPP and DEHP share the same modes of action associated with changes in steroid synthesis and cell-cell communication	Liu et al., 2005
Rat, Sprague- Dawley, n = 4 dams/group for necropsies on GD 17, GD 18 and GD 20; and n = 5 dams/group for necropsies on PND2	Pregnant rats gavaged from GD 14 to PND 3 with 750 mg/kg bw/day of DEHP. Offspring were examined at GD 17, GD 18, GD 20 and PND 2.	Reduced anogenital distance was seen in male offspring at PND 2. Testicular testosterone production and testicular testosterone concentration were reduced at all examined ages. Carcass testosterone was reduced at GD 17 and 18. Reduced testis weight was seen at GD 20 and PND 2. Increased intensity of staining for 3bHSD was seen in Leydig cells of DEHP exposed animals, and DEHP exposed testes had increased focal Leydig cell hyperplasia and increased numbers of animals with multinucleated gonocytes	Parks et al., 2000
Rat, Sprague- Dawley, n = 5 dams/group	Pregnant rat dams gavaged GD 14 to 18 with 0 or 750 mg/kg bw/day of DEHP.	Effects of DEHP, DBP and BBP on steroid hormone production and insl3 gene expression were examined in fetal rats exposed orally from gestation day 14 to 18. Reduced testosterone production and insl3 gene expression was seen in males at GD 18	Wilson et al., 2004

Overall, several rodent studies have demonstrated adverse reproductive effects of DEHP (Agarwal et al., 1986a,b; Arcadi et al., 1998; Andrade et al., 2006; Christiansen et al., 2010; Dostal et al., 1988; Gray et al., 1999; Gray et al., 2000; Jones et al., 1993; Lamb et al., 1987; Moore, 1996; NTP 1982; Parmar et al., 1995; Poon et al., 1997; Schilling et al., 2001; Wolfe & Layton, 2003). Most well-described are the effects on the male reproductive system, e.g. increased nipple retention, decreased anogenital distance, reduced number of spermatocytes and testicular changes, including multinucleated gonocytes, tubular atrophy and Leydig cell hyperplasia (Table 3 and Annex 1). It is well-known that these types of effects can be induced via endocrine disrupting modes of action (Wolf et al., 1999). Chemicals acting as androgen receptor antagonists can induce comparable effects (Wolf et al., 1999), but in the case of phthalates it is highly plausible that interference with steroid hormone synthesis in fetal testis is responsible for the anti-androgenic effects.

The female reproductive system and the thyroid hormone system may also be affected by DEHP. *In vivo*, DEHP has been found to alter steroidogenesis in perinatally exposed female rats leading to increased ovary weight, poor oocyte development and altered expression of steroidogenesis related genes in ovaries (Pocar et al., 2012). In adult rats, prolonged treatment with DEHP increases follicle atresia and decreases populations of ovarian follicles, as reviewed by Martinez-Arguelles et al., 2013. Moreover, effects of DEHP on thyroid histology indicating hyperactivity of the gland have been described in rat studies (Poon et al., 1997; Hinton et al., 1986; Howarth et al., 2001).

In conclusion, several rodent studies have demonstrated adverse effects in intact organisms, especially on male reproductive development and adult male reproductive organs.

4.2.3 Endocrine mode of action

The studies in table 3 show adverse effects of DEHP and/or an endocrine mode of action in vivo. Mode of action is defined as effects on organ/tissue/organism/physiological level. The in vivo mode of action data show effects on steroidogenesis, e.g. effects on testosterone production, further substantiated by mechanistic in vivo data showing changes in activity of steroidogenic enzymes and effects on gene pathways of steroidogenesis. Mechanistic data / mechanism of action are defined as data on effects at the cellular/subcellular/organelle/biochemical level (genes, receptors, enzymes etc). Several studies on testosterone production and steroidogenesis in fetal male rats indicate an endocrine disrupting mode of action of DEHP and its monoester metabolite methylhexyl phthalate (MEHP) in vivo (Borch et al., 2004, Borch et al., 2006; Hannas et al., 2011, Howdeshell et al., 2008; Parks et al., 2000; Wilson et al., 2004). This is further substantiated by an in vitro study showing decreased testosterone secretion from Leydig cells incubated with MEHP (Jones et al., 1993, Annex 1). It is important to note that the initial events at the molecular level for DEHP and related phthalates are not known, but that there is strong weight of evidence for an antiandrogen mode of action related to decreased fetal testosterone production. Several target genes involved in the development and function of fetal Leydig and Sertoli cells have been identified and several studies have shown reduced expression of genes in the steroid biosynthesis pathway (Hannas et al., 2011, Howdeshell et al., 2008; Parks et al., 2000; Wilson et al., 2004).

It should be noted that phthalates are absorbed as monoesters and/or rapidly metabolized to monoesters. Monoesters are transported across the placenta and reach the fetus (David 2006). Thus, it is the metabolites of phthalate diesters that are endocrine disrupting and mainly effects of metabolites such as MEHP are relevant.

Decreased fetal testosterone production is considered a key event in a cascade leading to adverse effects in the male reproductive system, as visualized by NRC, 2008. The reduction in testosterone production will decrease the activity of the androgen receptor in target tissues and interfere with androgen-mediated development. This will in turn lead to reproductive tract malformations including effects on anogenital distance, nipple retention, reproductive tract malformations and semen quality (Fig. 1).

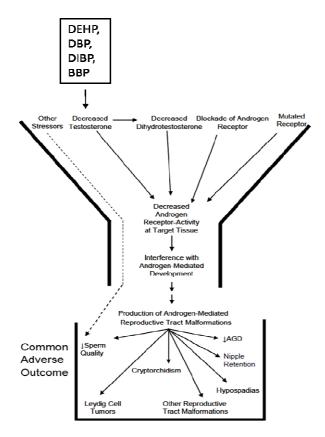


Fig. 1. Modified from NRC, 2008.

A possible estrogenic mechanism of action of DEHP has also been discussed as well as effects on the thyroid system. Studies on interaction of DEHP and MEHP with the estrogen or the androgen receptors have been carried out *in vitro*. DEHP antagonized the androgen receptor in some assays (Takeuchi et al., 2005), but not in others (Krüger et al., 2008; Kim et al., 2010; Parks et al., 2000). Although diesters may in some assays interact with the androgen receptor as well as the estrogen receptors, no interactions with monoesters have been found, as reviewed by David 2006. The DEHP metabolite monoethylhexyl phthalate (MEHP) altered steroidogenesis in cultured ovary follicles *in vitro* (Lovekamp and Davis 2001, Lenie and Smitz 2009) and DEHP interferes with binding of thyroxine to the thyroid receptor *in vitro*, as reviewed by Jugan et al., 2010. Potential interactions of DEHP or its metabolites with steroid receptors are not considered to be relevant mechanisms of action for inducing the observed adverse effects on male reproduction.

Overall, the adverse effects of DEHP on the male reproductive system are considered to be primarily related to effects on steroidogenesis.

In conclusion, several rodent studies have demonstrated an endocrine mode of action *in vivo* which is substantiated by mechanistic data from *in vivo* and *in vitro* studies. Several of the studies showed decreased testosterone levels, indicating an anti-androgenic mode of action of DEHP and the metabolite MEHP due to effects on steroidogenesis. It is biologically highly plausible that the suggested anti-androgenic mode of action gives rise to the adverse reproductive effects of DEHP reported in the previous section.

4.2.4 Plausible link between adverse effects and endocrine mode of action

Altered steroidogenesis is related to adverse effects in males as well as females. The adverse effects of DEHP on male reproductive system can be attributed to decreased testosterone

levels, i.e. an anti-androgenic mode of action (EU RAR 2008). Investigation of toxicological effects of DEHP in rat studies have provided convincing evidence that exposure can cause changes in the developing endocrine system as well as irreversible adverse reproductive effects. Anogenital distance and nipple retention in male pups are some of the adverse effects observed and are generally known to be androgen dependant, and decreases in anogenital distance and increases in nipple retention in males is associated with an anti-androgenic mode of action (Bowman et al. 2003; Wolf et al., 1999; Imperato-McGinley et al. 1985; Imperato-McGinley et al. 1986). Targeted studies on phthalate mode of action showed changes in steroidogenesis, including reduced testosterone production and down-regulation of genes involved in steroid synthesis (Hannas et al., 2011, Howdeshell et al., 2008; Parks et al., 2000; Wilson et al., 2004). Reduced testosterone production can in turn impair androgen signalling in androgen sensitive target organs during sensitive periods of development. Based on these findings it is highly biologically plausible that the observed adverse effects are linked to the endocrine disrupting mode of action of DEHP and the metabolite MEHP.

4.2.5 Further work substantiating the plausible link between adverse effects and endocrine mode of action

In addition to the above studies showing an endocrine disrupting mode of action of DEHP, a review paper by David, 2006, describes alternative cascades of events that could lead to the adverse effects in mammalian species observed for DEHP.

Path A describes how altered gene expression for cholesterol transport and steroidogenesis in Leydig cells (Lehmann et al., 2004, Schultz et al., 2001, Barlow et al., 2003, Lee et al., 2004; Liu et al., 2005) can lead to decreased cholesterol transport (Schultz et al., 2001, Gazouli et al., 2002, Barlow et al., 2003) and subsequent decreased T synthesis (Bell et al., 1978, Foster et al., 1983, Parks et al., 2000, Akingbemi et al., 2001; Zhu et al., 2005). In turn, this can lead to the adverse health effects of hypospadias and underdeveloped secondary sex organs (Wine et al., 1997, Mylchreest et al., 1998, 1999, 2000, Gray et al., 1999, 2000, Parks et al., 2000).

Path B describes how altered gene expression of insl3 protein in Leydig cells (Lehmann et al., 2004; Liu et al., 2005) can lead to decreased levels of insl3 (Wilson et al., 2004; Liu et al., 2005) and failure of gubernacular ligament to develop (Nef and Parada, 1999). In turn, this can lead to the adverse health effect of cryptorchidism (Gray et al., 1999, 2000, Parks et al., 2000).

Path C describes effects on Sertoli cells and gonocytes including presence of multinucleated gonocytes in the seminiferous tubules. Influences on Sertoli cells are not clear but include decreased expression of cyclin D2 in neonatal Sertoli cells, decreased gene expression for cell junctions, decrease in Sertoli cell proliferation, interference with cytoskeleton, decreased intercellular communication, and inhibition of gap junctional intercellular communication (Liu et al., 2005, Li and Kim, 2003, Li et al., 1998, 2000, Kleymenova et al. 2005, Yu et al., 2005, Kang et al 2002). Additionally, decreased T production in Leydig cells may lead to inhibition of Sertoli cell numbers (Atanassova et al., 2005). Gonocyte effects may be related to Sertoli cell changes, but this has not been clarified.

Recent studies have further elaborated on the possible mechanisms/ modes of action behind the observed adverse effects in mammalian species. Rat studies have shown changes in fetal testis proteome indicating a central role of estradiol; findings that corresponded with increased plasma estradiol levels in male rat fetuses (Klinefelter et al., 2012). Supplementing the proposed role of reduced testosterone production, the authors thus suggest a role for estradiol in the induction of testicular effects of phthalates and as a cause of the testicular dysgenesis syndrome (Veeramachaneni and Klinefelter, 2014).

Effects of DEHP on thyroid histology have also been described in rat studies (Poon et al., 1997; Hinton et al., 1986; Howarth et al., 2001), and this may be related to interference of DEHP

with binding of thyroxine to the thyroid receptor, as reviewed by Jugan et al., 2010, and it is thus possible that DEHP may act as an endocrine disrupter via a thyroid hormone disrupting mode of action.

Overall, it is highly biologically plausible that the described adverse effects on the male reproductive system are induced through an endocrine disrupting mode of action mainly related to altered steroidogenesis following exposure to DEHP.

Environmental relevance in relation to mammalian wildlife

Differences have been observed between investigated mammalian species sensitivity for endocrine disrupting effects of DEHP. It is expected that in case of exposure there will be difference in sensitivity among the large number of untested mammalian wildlife species, resulting in ED related adverse effects in these species.

5 Environmental hazard assessment

5.1 Other effects: Endocrine disruption

5.1.1 General approach

To clarify how DEHP fulfills the definition of being an endocrine disrupter, the topics described in chapter 4 will be covered in relation to the environment. It is important to emphasize that the results from chapter 4 are also relevant for mammalian wildlife, especially to wildlife species with low reproductive output (including endangered species), because any negative effect on development or reproduction has a high likelihood of leading to serious effects at the population level for such species.

As described for human health, in this report it is assumed that a substance should fulfil the recommendations from the European Commission's Endocrine Disrupters Expert Advisory group in order to be identified as an endocrine disruptor, and the available information is assessed based on the following topics:

- 1) Adverse effects
- 2) Endocrine mode of action
- 3) Plausible link between adverse effects and endocrine mode of action
- 4) Human relevance

In relation to effects on wildlife (the environment) the above mentioned topic 4) human relevance is replaced with "environmental relevance" (see section "5.1.1 General approach – Environment").

Hence the fourth issue that should be considered as regards endocrine disrupters in relation to the environment is – not as for human health, human relevance – but rather environmental relevance, i.e. whether the adverse effects observed are also likely to cause effects at the population level.

For considering endocrine disrupting effects in the environment, data from both terrestrial and aquatic species should be analyzed. This is in conformity with the agreement of the European Commission's Endocrine Disrupters Expert Advisory group that "In relation to ecotoxicology, data on all species, including mammalian data generated to assess human toxicity, are generally considered relevant for the assessment of effects on ecosystems. In addition, since ecotoxicological assessment relates to impact at the population level rather than the individual level, relevance is applied in the context of identified adverse effects being relevant for the population" (JRC 2013).

Generally in regulatory ecotoxicology effects on survival, growth, but in particular development and reproduction are considered relevant endpoints for effects on populations and as such these endpoints are used to derive regulatory hazard and risk assessment decisions. It is noted that effects after longer time exposure relating to development and reproduction are generally preferred types of data for such decision.

Hence, the reproductive effects of DEHP on mammals are of regulatory relevance for the environment.

5.1.2 Effects in the aquatic compartment (including sediment)

Overviews of the key studies on effects of DEHP on wildlife were given in the EU risk assessment report for DEHP (2008). Studies from the report which include endpoints relevant for the assessment of endocrine disrupting effects are presented in table 4 below. Detailed study summaries can be found in the EU risk assessment report.

Table 4. Key studies on effects of DEHP on wildlife including endpoints relevant for the assessment of endocrine disrupting effects from the EU risk assessment report for DEHP (EU RAR 2008).

Species	Vehicle	Exp. period	Endpoint	Effect conc. (mg/l)		Comment	Reference and estimated reliability score (Klimisch)
Japanese medaka, (Oryzias latipes (larval 1- 3 d))	Acetone 0.25 ml/l	168 days	Growth survival	NOEC	<0.55 4	Significant (p= 0,05) weight reduction, 13,4%, when compared to control. Tested concentrations were above water solubility. No effects on survival	DeFoe et al. (1990) [*]
Japanese medaka, (Oryzias latipes) (Embryo- larval)	Ethanol <100µg/l	newly fertilised eggs exposed until hatch	Hatching time, hatching success, sex ratio, GSI, mortality, body weight				Chikae et al. (2004a) (Score 2)
Japanese medaka, (Oryzias latipes) (Embryo- larval)	Ethanol	3 weeks after hatching	mortality, body weight, sex ratio, GSI,			Test concentrations 0, 0.01, 0.1, 1.0 and 10.0 µg/l. Effects on body weight, GSI and mortality were observed, however, not dose dependent.	Chikae et al. (2004b) (Score 2)
Japanese medaka, (Oryzias latipes) (Embryo- larval)	acetone	5 days	Blood samples analysed for vitellogenin	NOEC	<0.01	Test concentrations 0, 10, 50 and 100 µg/l. Decline in vitellogenin in females. Semi-quantitative method. The reporting of the study is poor, affecting the reliability of the study.	Kim et al. (2002)* (Score 2) ⁴
Japanese medaka,	Acetone	1 or 2 dph ⁵	Vitellogenin, GSI and	NOEC	0.001	Test concentrations 1, 10 and 50 µg/l. Declined	Kim et al. (2002)

^{*} The nominal aquatic exposure concentrations applied in the study were above the non-colloidal solubility. For further details see section 5.1.2

³ The study is reliable with restrictions (not GLP) according to Klimisch score 2 but only one DEHP concentration was tested and although the concentration was measured it was above water solubility and the study was not used to derive a NOEC.

⁴ The study is reliable with restrictions (not GLP) according to Klimisch score 2 but the endpoint vitellogenin is not fully reliable because of an un-validated semi-quantitative method performed on too few animals and lack of proper statistics.

dph: days post hatch

Species	Vehicle	Exp. period	Endpoint	Effect conc. (mg/l)		Comment	Reference and estimated reliability score (Klimisch)
<i>(Oryzias latipes)</i> (Embryo- larval)		to 3 months	histological analysis of reproductive organs			female GSI at 10 µg/l and inhibition of maturation of gonads . The reporting of the study is poor, affecting the reliability of the study.	(Score 2) ⁶
Japanese medaka, (Oryzias latipes) (Embryo- larval)	Acetone	1-90 dph	Sex ratio, intersex morphometry	NOEC	>5	Test concentrations 0, 500, 1000 and 5000 μg/l (nominal).	Metcalfe et al, (2001) [*] (Score 2)
Japanese medaka, (Oryzias latipes) (Embryo- larval)	Acetone <100 µg/l	exposed 2 weeks	No. of eggs, hatching rate	NOEC	>0.39	Test concentrations 39, 120 and 390µg/l. No effect on number of eggs or hatching rate	Shioda and Wakabashi (2000)* (Score 2)
Zebrafish, (Danio rerio)	In food	90 days	Reproduction rate Fry survival	NOEC LOEC	<50 50 (in food)	Test conc, 50 and 100 mg/kg in food Considered invalid due to 49% mortality in control	Mayer and Sanders (1973) (Score 3)
Fathead minnow (Pimephales promelas)	Water and food triethylen e glycol and acetone	F0, F1 and, F2 (472 days)	Hatchability, survival, growth, vitellogenin, sex ratio			5 μg/l in water + 125 or 500 mg/kg in food. Significant increase in female F2 vitellogenin at high dose.	Caunter et al., 2004 (Score 2)
Guppy, (Poecilia reticulata)	In food	90 days	Reproduction rate	NOEC	100 (in food)	Test conc:100 mg/kg in food, Non-significant effects were observed	Mayer and Sanders (1973) (Score 2)
Cod, (Gadhus morhua)	In food	121 days	Steroid metabolism	NOEC	10 100 (in food)	No significant differences in steroid metabolic profiles in male fish at highest dose (1000 µg DEHP/g food) compared to control. In female fish there was a significant alteration of steroid biosynthetic pathways in the head kidneys and ovaries of the DEHP- fed fish. The ratios of 11-	Freeman et al. (1981) (Score 2)

 $^{^{6}}$ The study is reliable with restrictions (not GLP) according to Klimisch score 2 but the endpoint vitellogenin is not fully reliable because of an un-validated semi-quantitative method performed on too few animals and lack of proper statistics.

 $^{^{*}}$ The nominal aquatic exposure concentrations applied in the study were above the non-colloidal solubility. For further details see section 5.1.2

Species	Vehicle	Exp. period	Endpoint	Effect conc. (mg/l)		Comment	Reference and estimated reliability score (Klimisch)
						deoxycortisol from 100 and 1000 µg DEHP/g groups were greater than twice the observed ratios obtained from the control and 10 µg DEHP/g.	
Atlantic salmon, (Salmo salar)	In food	4 weeks	Sex ratio and liver somatic index	NOEC	300 1,500 (in food)	Test conc.: 300 and 1500 mg/kg food (nominal concentrations) 2-4 Injections of 160 mg/kg DEHP during 17 days caused no vitellogenin induction in juvenile salmon (7.5 g). The result is not reliable because of an un- validated method.	Norrgren et. al (1999) (Score 2) ⁷
Atlantic salmon, (Salmo salar)	In food	4 weeks	Intersex (ovotestis)	NOEC LOEC	800 1,500 (in food)	Test conc.: 400, 800 and 1500 mg/kg food. The EU RAR (2008) used a NOEC of 160 mg/kg for ovotestis by dividing 800 with 5 to normalize the dry food used, to food with normal water content	al (2007) (Score 2)
Xenopus laevis (newly spawned eggs)	methyl alcohol (10ml/6L)		larval development, growth, survival	See comm ent		spawned eggs until fully developed frogs The results indicate an embryotoxic effect of DEHP, but there was no dose-response relationship The observed effects were also seen for the solvent control (methyl alcohol) [*] No conclusion regarding effects of DEHP can be drawn from this study	and Zietz (1983), (Score 2)* Dumpert. (1981) (Score 2)*
<i>Xenopus laevis</i> (newly spawned eggs)	DEHP in 1/5 Holfreter solution	200 days	retarded development time, reduced pigmentation of tadpoles	NOEC LOEC	< 2 2	Measured, the only concentration tested (single application and repeated weekly	Zietz (1983), (Score 2)*

⁷ Vitellogenin was investigated with an un-validated semi-quantitative method. The result is not reliable because the data are not presented in the publication.

 $^{^{*}}$ The nominal aquatic exposure concentrations applied in the study were above the non-colloidal solubility. For further details see section 5.1.2

Species	Vehicle	Exp. period	Endpoint	Effect conc. (mg/l)	Comment	Reference and estimated reliability score (Klimisch)
					Effect at repeated application, no effect at single application of DEHP The test organisms were exposed from newly spawned eggs until fully developed frogs.* The time from egg to fully developed frog was 78 days in the control, 96 days in the 1/5 Holtfreter solution and 184 days in the 2 mg/l DEHP group. A high frequency of unhatched eggs (> 50%) in all treatments as wel as in the controls.	(Score 2)*

It is not possible to definitively conclude whether DEHP is an endocrine disrupter in fish based on the studies reported in the report (EU RAR 2008) and a conclusion is not drawn in the report. Vitellogenin was investigated in three fish studies with contradicting results and the use of un-validated methods (Kim et al., 2002, Norrgren et al., 1999) or a vitellogenin method not reported (Caunters et al 2004) make it impossible to conclude if DEHP impact vitellogenin in fish and hence may exert estrogenic/anti-estrogenic properties.

As regards endocrine disruptive adverse effects, the only endocrine specific adverse effect recorded is a slightly, but yet significant, skewing of sex ratio (from 49% females to 64% females) in Atlantic salmon after feeding 1500 mg/kg dwt DEHP for 4 weeks after yolk sac resorption followed by a 4 month depuration period (Norrgren et al., 1999). The result on sex ratio could however not be repeated in a study with increased power and measured concentrations of DEHP (Norman et al., 2007), where ovotestis was observed in males but no effect on sex ratio was seen. The authors hypothesize that the changed sex ratio observed by Norrgren et al (1999) may have been caused by a higher exposure concentration than that used (and measured) in the study by Norman et al (2007). This may be a plausible hypothesis, because ovo-testis can be characterized as a mild form of phenotypic sex reversal. Summaries of the two studies can be found in the EU RAR (2008).

According to the EU RAR (2008) the studies available at that time on amphibians (Dumpert and Zietz, 1983, Dumpert. 1981) where significant effect on development was observed indicate that amphibians might be sensitive to DEHP at high concentrations. The possibility that these effects could indicate adverse anti-thyroidal potential of DEHP was not discussed in the report.

The ED relevant aquatic studies published on DEHP after the EU RAR (2008) are evaluated below.

The studies were identified by searching the Web of Science[™] including the following databases: Web of Science[™] Core Collection (1900-present), MEDLINE[®] (1950-present) and SciELO Citation Index (1997-present) using the search phrases: DEHP and endocrine, DEHP and fish, DEHP and environment, Bis(2-ethylhexyl) phthalate and endocrine, Bis(2-ethylhexyl) phthalate and fish, Bis(2-ethylhexyl) phthalate and environment.

According to the EU 2008 RAR, the water solubility of DEHP found in the literature are highly variable with values ranging from 0.0006 to 1.3 mg/L at 20-25°C. The probable explanation is

that DEHP readily forms more or less colloidal dispersions in water. A non-colloidal solubility of 3 μ g/l was chosen for the Risk assessment in 2008. This should be taken into account when the studies below (where concentrations of DEHP often exceed the non-colloidal concentration of 3 μ g/l) are evaluated. In these cases the exposure might be to a combination of colloidal and non-colloidal DEHP which may affect the uptake and bioavailability of DEHP. This solubility of DEHP is also affected by use of different carrier solvents as DMSO and ethanol. DEHP may however also under natural conditions be taken up by oral ingestion of DEHP contaminated organic material. Focus here is on hazard identification relative to serious population relevant effects related to ED and not risk assessment. Hence ED related serious population relevant effects only found above the water solubility limit of DEHP is therefore regarded as of some relevance. Such studies have been marked with an* in study reviews.

Several studies have been performed with endocrine relevant endpoints included since the EU 2008 RAR.

5.1.2.1 Studies conducted after the EU RAR (2008) - Fish

5.1.2.1.1 Short-term toxicity to fish

No endocrine relevant endpoints are included in the short-term toxicity tests to fish and therefore these studies are not discussed in this part of the dossier.

5.1.2.1.2 Long-term toxicity to fish

An estimated reliability score (Klimisch 1997) is given at the end of each study summary. In this respect it should be noted that significant effects from studies with only nominal exposure concentrations are also regarded as sufficiently reliable in this context. One reason is that the water solubility of DEHP as mentioned above is somewhat uncertain and that exposure above a water solubility level of 3 μ g/L still may expose the organisms to the substance, but then as well as to truly dissolved DEHP also to DEHP micelles. Even in case much higher concentrations than also the critical micelle concentration was used and effects observed reliably, it can be concluded that DEHP had these effects even though an effect concentration cannot be established (besides referring to the nominal concentrations employed, meaning that the likely true exposure concentration was probably to both fully dissolved DEHP (around 3 μ g/L) and DEHP micelles). Finally use of also test data with only nominal concentrations are regarded as acceptable for hazard identification and because the conclusions regarding whether DEHP fulfils Article 57(f) of REACH may be reached without necessarily also being able referring to a LOEC, ECx or NOEC value in each of the references used as the scientific background information.

Zanotelli et al. (2010): Different concentrations of DEHP (0.1–10 µg/l nominal concentrations) applied continuously for 91 days were tested in guppy (*Poecilia reticulate*) less than one week old at the beginning of the treatment (5 test concentrations, one replicate of 31 fish per concentration). DMSO was used as solvent. From 14 days after the start of exposure, guppies treated with 10 µg/L showed significantly reduced body length as compared with control fish. The inhibitory effect of DEHP was concentration-dependent and increased with time, leading to a maximal reduction in body length of 15 and 40% at 1 and 10 µg/l DEHP, respectively. The effect was even more pronounced for body weight, which was diminished by up to 40 and 70% at 1 and 10 µg/l DEHP, respectively. The reduction in growth was still significant at 91 days of DEHP treatment, whereas the Fulton's condition factor was unaffected. While DEHP significantly blocked growth in both male and female guppies, no shift in the sexual development was observed. These data show that DEHP can profoundly affect development in fish but it is not clear whether the effect is endocrine mediated or not. (Klimisch Score 2 (non-guideline study)).

Ye et al. (2014)*: Newly hatched Marine medaka larvae (Oryzias melastigma) were exposed to either DEHP (0.1 and 0.5 mg/L) or MEHP (0.1 and 0.5 mg/L) nominal values for 6 months in a semi-static system with three water exchanges per week. O. melastigma is not a widely used OECD model fish but has been used in some ecotox studies as a marine model - probably because it is closely related to Japanese medaka (Oryzias latipes) which is a well described test model. O. melastigma exposure was conducted in 3 L aquaria for the first month, 6 L aquaria for the next two months and 10 L aquaria for the last three months of exposure. DMSO was used as carrier solvent (0.1%). Three replicates of 50 larvae were used for each exposure concentration. The effects on reproduction, sex steroid hormones, liver vitellogenin (VTG), gonad histology and the expression of genes involved in the hypothalamic-pituitary-gonad (HPG) axis were investigated. Exposure to DEHP from hatching to adulthood accelerated the start of spawning and decreased the egg production of exposed females at both 0.1 and 0.5 mg/I DEHP. Moreover, exposure to both DEHP and MEHP resulted in a reduction in the fertilization rate of oocytes spawned by untreated females paired with treated males. A significant increase in plasma 17β -estradiol (E2) along with a significant decrease in testosterone (T)/E2 ratios was observed in males, which was accompanied by the upregulation of Idlr, star, cyp17a1, 17βhsd, and cyp19a transcription in the testis. Increased concentrations of T and E2 were observed in females, which was consistent with the upregulation of ldlr. The expression of brain gnrhr2, fsh β , cyp19b and steroid hormone receptor genes also corresponded well with hormonal and reproductive changes. The liver VTG level was significantly increased after DEHP and MEHP exposure in males. DEHP induced histological changes in the testes and ovaries: the testes displayed a reduced number of spermatozoa, and the ovaries displayed an increased number of atretic follicles. In addition, the tissue concentrations of MEHP, MEHHP (mono-(2-ethyl-5-hydroxyhexyl)-phthalate) and MEOHP (mono-(2-ethyl-5-oxohexyl)-phthalate) in DEHP-exposed groups were much higher than those in MEHP-exposed groups, and there were no dose- or sex-specific effects. Thus, DEHP exerts more obvious toxic effects compared with MEHP. There seemed to be some commonalities in the toxic effects and molecular mechanisms of DEHP and MEHP, suggesting that at least some of the toxic effects of DEHP may be induced by both DEHP itself and DEHP metabolites (including MEHP). Taken together, these results indicate that exposure to DEHP and MEHP from hatching to adulthood causes endocrine disruption with sex-specific effects in marine medaka, with males being more sensitive than females. (Klimisch Score 2 (non-guideline study)).

Wang et al. (2013)*: Adult Chinese rare minnow (Gobiocypris rarus) were exposed to DEHP (0 μ g/L, 3.6 μ g/L, 12.8 μ g/L, 39.4 μ g/L, and 117.6 μ g/L (measured concentrations, DMSO as solvent)) for a 21-d period. Three replicates of each 8 females and 8 males were used per concentration. After 21 days, concentrations of sex hormones in the plasma and relative transcription of various associated genes were measured in the hypothalamic-pituitarygonadal (HPG) axis and liver of the fish. Exposure to DEHP resulted in a significantly higher circulating concentrations of testosterone (T) and lower concentrations of estradiol (E2), which were accompanied by upregulation of Cyp17 mRNA and downregulation of Cyp19a mRNA in the gonads of females. In males, increases of T and E2 levels were consistent with upregulation of Cyp17 and Cyp19a in the gonads. Furthermore, the T/E2 ratio was significantly increased in females but reduced in males. A significant increase in the levels of hepatic vitellogenin (VTG) gene transcription was observed in both females and males. This study showed that waterborne exposure to DEHP altered plasma sex hormone levels and modulated gene transcription profiles of associated genes in the HPG axis and liver. No endocrine related or systemic adverse effects were investigated nor observed. (Klimisch Score 2 (non-guideline study).

Uhren-Webster et al. (2010): Investigated the effects of di(2-ethylhexyl) phthalate (DEHP) on the reproductive health of male zebrafish (*Danio rerio*). The study may be useful from a

^{*} The nominal aquatic exposure concentrations applied in the study were above the non-colloidal solubility. For further details see section 5.1.2

mechanistic perspective but with a not natural exposure route. As long as severe systemic toxicity is not occuring at the tested doses, the effects related to ED at these doses have been regarded as of some relevance. Males were treated with 0.5, 50 and 5000 mg DEHP kg⁻¹ (body weight) for a period of 10 days via intraperitoneal injection. Four replicates of two males and two females were used per concentration. The effects of the exposure were assessed by analysing fertilisation success, testis histology, sperm DNA integrity and transcript profiles of the liver and testis. A significant increase in the hepatosomatic index and levels of hepatic vitellogenin transcript were observed following exposure to 5000 mg DEHP kg⁻¹. Exposure to 5000 mg DEHP kg⁻¹ also resulted in a reduction in fertilisation success of oocytes spawned by untreated females. However, survival and development of the resulting embryos were unaffected by all treatments, and no evidence of DEHP-induced sperm DNA damage was observed. Exposure to 50 and 5000 mg DEHP kg^{-1} caused alterations in the proportion of germ cells at specific stages of spermatogenesis in the testis, including a reduction in the proportion of spermatozoa and an increase in the proportion of spermatocytes, suggesting that DEHP may inhibit the progression of meiosis. In parallel, exposure to 5000 mg DEHP kg⁻¹ increased the levels of two peroxisome proliferatoractivated receptor (PPAR) responsive genes (acylcoenzyme A oxidase 1 (acox1) and enoyl-coenzyme A, hydratase/3-hydroxyacyl coenzyme A dehydrogenase (ehhadh). These data demonstrated that exposure to high concentrations of DEHP - in a test with a not natural exposure route - disrupts spermatogenesis in adult zebrafish with a consequent decrease in their ability to fertilise oocytes spawned by untreated females. Furthermore, the data suggest that the adverse effects caused by exposure to DEHP are likely to occur preferentially via PPAR signalling pathways in the testis and oestrogen signalling pathways in the liver. (Klimisch Score 2 (non-guideline study)).

Mankidy et al. (2013)*: The study investigated cytotoxicity, endocrine disrupting effects mediated via AhR, lipid peroxidation and effects on expression of enzymes of xenobiotic metabolism caused by di-(2-ethy hexyl) phthalate (DEHP), diethyl phthalate (DEP), dibutyl phthalate (DBP) and benzyl butyl phthalate (BBP) in developing embryos of fathead minnow (Pimephales promelas). DMSO was used as solvent. Oxidative stress was identified as the critical mechanism of toxicity (CMTA) in the case of DEHP and DEP, while the efficient removal of DBP and BBP by phase 1 enzymes resulted in lesser toxicity. DEHP caused cytotoxicity at 10 mg/L (P < 0.01) and in developing fathead minnow embryos. Exposure to 1 mg DEHP/L resulted in 30% mortality. DEHP and DEP did not mimic estradiol (E2) in transactivation studies, but at concentrations of 1 mg/L in H295R cells, synthesis of E2 was affected and T synthesis was affected (decline) at 0.01 mg/L. Exposure to 10 mg BBP/L resulted in weak transactivation of the estrogen receptor (ER). All phthalates exhibited weak potency as agonists of the aryl hydrocarbon receptor (AhR). The order of potency of the 4 phthalates studied was; DEHP > DEP > BBP » DBP. It should be noted that some of the exposure concentrations causing effect exceeded the water solubility of DEHP by several orders of magnitude and exposure via other routes than water may have occurred.- see also discussion of this above (Klimisch Score 2 (non-guideline study)).

Crago & Klaper (2012)*: In this study male fathead minnows (FHM) (*Pimephales promelas*) were exposed to 12 μ g/l, nominal concentration (methanol as solvent) of two anti-androgens, the herbicide linuron, and the plasticizer di(2-ethylhexyl) phthalate (DEHP) individually and as part of a mixture of the two for a 28-day period. A total of 40 male FHM were divided evenly among the four exposures. At the end of this period there was a reduction in plasma testosterone (T) concentrations in male FHM exposed to the mixture, but not in FHM exposed individually to linuron or DEHP or the control FHM. There was also a significant reduction in 17 β -estradiol (E2) in the DEHP-only and mixture exposed groups as compared to the control. Contrary to what has been previously published for these two chemicals in mammals, the lower plasma T concentrations in male FHM exposed to the mixture was not a result of the

^{*}The nominal aquatic exposure concentrations applied in the study were above the non-colloidal solubility. For further details see section 5.1.2

inhibition of genes involved in steroidogenesis; nor due to an increase in the expression of genes associated with peroxisome proliferation. Rather, an increase in relative transcript abundance for CYP3A4 in the liver and androgen and estrogen-specific SULT2A1 and SULT1st2 in the testes provides evidence that the decrease in plasma T and E2 may be linked to increased steroid catabolism. Feedback from the pituitary was not repressed as the relative expression of follicle stimulating hormone β -subunit mRNA transcript levels in the brain was significantly higher in both DEHP and mixture exposed FHM. In addition, luteinizing hormone β -subunit mRNA transcript levels in the test on the mixture as compared to the control. Hormone receptor mRNA transcript levels in the liver and testes were not significantly different across all four exposure groups. Overall this study suggests that DEHP around its water solubility level may decrease serum E2 concentration in fathead minnow probably as a result of induction of the mixed function oxygenase iso-enzymes involved in the catabolism of E2. (Klimisch Score 2 (non-guideline study)).

Carnevali et al. (2010): Female zebrafish (Danio rerio) were exposed for three weeks, in semi-static conditions, to nominal 0.02, 0.2, 2, 20 and 40 µg/l concentrations of DEHP. Ethanol was used as solvent. Each exposure concentration had three replicates of 30 fish. After three weeks, a significant decrease in ovulation and embryo production was observed. The effects of DEHP on several key regulators of oocyte maturation and ovulation including bone morphogenetic protein-15 (BMP15), luteinizing hormone receptor (LHR), membrane progesterone receptors (mPRs) and cyclooxygenase (COX)-2 (ptgs2) were determined by real time PCR (3-4 repetitions). The expressions of BMP15 and mPR proteins were further determined by Western analyses to strengthen molecular findings. Moreover, plasma vitellogenin (vtg) titers were assayed by an ELISA procedure to determine the estrogenic effects of DEHP and its effects on oocyte growth. A significant reduction of fecundity in fish exposed to all DEHP concentrations was observed with 50% control group fecundity at 0.02 $\mu q/l$ down to 1% control group fecundity at 40 $\mu q/l$. The reduced reproductive capacity was associated with an increase in ovarian BMP15 levels. This rise, in turn, was concomitant with a significant reduction in LHR and mPRb levels. Finally, ptgs2 expression, the final trigger of ovulation, was also decreased by DEHP. By an in vitro maturation assay, the inhibitory effect of DEHP on germinal vesicle breakdown was further confirmed. In conclusion, DEHP affecting signals involved in oocyte growth (vtg), maturation (BMP15, LHR, mPRs,) and ovulation (ptgs2), impairs ovarian functions with serious consequences on embryo production. (Klimisch Score: Due to the lack of information on water renewal period the reliability of the two studies are evaluated to Klimisch Score 2/(4) – generally acceptable but certain documentation of the test procedure is missing. The results of the studies are therefore considered of some relevance and can contribute to the overall environmental ED evaluation of DEHP (nonquideline study)).

Corradetti et al (2013) evaluated the effect of DEHP (nominally 0.2 and 20 μ g/L) on the reproductive biology of adult male zebrafish (Danio rerio). For each concentration, three replicates of 30 fish each were exposed for one or three weeks. Ethanol was used as solvent. The effects of DEHP and 17b-ethynylestradiol were determined after one or three weeks of exposure by terminal deoxyribonucleotidyltransferase-mediated dUTP Nick-End Labeling assay (TUNEL assay), histomorphometric analysis and evaluation of reproductive performance. DEHP impaired reproduction in zebrafish by inducing a mitotic arrest during spermatogenesis, increasing DNA fragmentation in sperm cells and markedly reducing embryo production (up to 90%) at 0.2 μ g/l DEHP. In conclusion, relatively short term exposure below the water solubility level of DEHP is able to severely inhibit spermatogenesis and to affect reproduction in zebrafish. The EE2-treated fish in this study acted as positive controls. The same spermatogonia and spermatid accumulation was observed on histomorphometric analysis of testis collected from fish exposed to EE2 (25 ng/ml), as in the testes from fish exposed to both concentrations of DEHP (0.2 and 20 μ g/l). This indicates that even the lowest exposure concentration of DEHP (0.2 μ g/l), which was at least one order of magnitude less than the water solubility level, had negative effects on reproduction, probably acting via anti-androgenic or estrogenic effects. The authors hypothesize that the histological abnormalities caused by DEHP may result from DNA damage in addition to estrogenic effects and that the >90% decreased embryo production (P < 0.01) may have been a result of impaired male behavior and testes male hormone production. Following the exposure to DEHP at 0.2 and 20 μ g/l, male reproductive capacity recovered in untreated water after 9 and 13 days suggesting reversibility of effects on male reproduction after one to three weeks DEHP exposure. (Klimisch Score: Due to the lack of information on water renewal period the reliability of the two studies are evaluated to Klimisch Score2/(4) – generally acceptable, but certain documentation of the test procedure is missing. The results of the studies are therefor considered of some relevance and can contribute to the overall environmental ED evaluation of DEHP (non-guideline study)).

Medaka studies from the Ministry of Environment Japan:

The Ministry of Environment in Japan published two reports in relation to their investigation about EDCs. The first report (MOE 2005) is a brief summary of 61 chemicals undergoing investigation in different assays. It is correct that a medaka vitellogenin assay was performed as well as partial and full lifecycle studies with medaka. The conclusions in the report were as follows: frequency is low, but the appearance of testis-ova was confirmed. There did not appear to be a negative effect on fertilization rates. Clear endocrine disrupting effects were not recognized. As no details on test concentration, number of animals, mortality etc. is provided it is not possible to evaluate these studies in the current dossier.

The second report (MOE 2010) named "Further Actions to Endocrine Disrupting Effects of Chemical Substances" does not include new experimental data and is a more generic approach to ED testing. This report also concludes for DEHP that testis-ova were observed in low appearance frequency to the extent that would not have caused adverse effects on fecundity. Thus, clear endocrine disrupting effects were not recognized. Because no new data on the medaka experiments are provided, these studies are not evaluated in the current dossier. The studies are therefore assigned Klimish cat. 4 (unassignable).

5.1.2.2 Studies conducted after the EU RAR (2008) - Aquatic invertebrates

5.1.2.2.1 Short-term toxicity to aquatic invertebrates

Planelló et al. (2011)^{*} investigated the effects of DEHP and BBP in the larvae of *Chironomus riparius* under acute short-term treatments. Fourth instar larvae, were experimentally exposed to five concentrations (0.01, 0.1, 1, 10, and 100 mg/l) of DEHP and BBP for 24 h. Ethanol was used as solvent. Three independent experiments were carried out in each concentration for each phthalate, using 10 larvae arising from three different egg masses and each sample consisted of at least three replicates (n = 9). Solvent control was included. The potential effect of DEHP and BBP on the ecdysone endocrine system (molting hormone system) was studied by analysing the two genes, EcR and usp, of the heterodimeric ecdysone receptor complex. It was found that BBP provoked the overexpression of the EcR gene, with significant increases from exposures of 0.1 mg/l and above, while DEHP significantly (P<0.05) decreased the activity of this gene at the highest concentration. (Klimisch Score 2 (non-guideline study).

Otherwise, no endocrine relevant endpoints are included in the short-term toxicity tests to aquatic invertebrates and therefore these studies are not discussed in this part of the dossier.

5.1.2.2.2 Long-term toxicity to aquatic invertebrates

^{*}The nominal aquatic exposure concentrations applied in the study were above the non-colloidal solubility. For further details see section 5.1.2

No endocrine specific endpoints are included in the long-term toxicity tests to aquatic invertebrates. Endpoints as reproduction rate could though inform about adverse effects without describing the causality of an endocrine derived mode of action. In the EU RAR (2008) 12 long term toxicity tests to invertebrates exposed via water (predominantly using *Daphnia magna*) were presented and it can be concluded that overall no reproductive effects were seen below the level of systemic toxicity and that toxicity occurred at levels above DEHP water solubility. Therefore it is decided not to include these data in the present dossier.

5.1.3 Adverse effects related to endocrine disruption

Below, the endocrine disruptive effects in non-mammalian aquatic (vertebrate) species are summarized from the above mentioned studies.

In fish, two studies fulfill the requirement of adversity and a related endocrine MoA: Norrgren et al. (1999) see a skewed phenotypic sex ratio in Atlantic salmon and this endpoint is considered to be both endocrine specific and adverse (OECD, 2012) and Carnevali et al. (2010) observed increased female vitellogenin in combination with a decline in embryo production to about 1% of control production. Corradetti et al 2013 observed a >90% decreased embryo production after exposure of male zebrafish to 0.2 μ g/l and 20 μ g/l DEHP.

Conclusion: Overall DEHP acted as a weak estrogen and/or anti-androgen changing the sex ratio of fish in one study, inducing ovo-testis in another, decreasing reproductive output in combination with Vtg induction in a third study as well as decreasing male reproductive output in a fourth study. Based on these studies and supported by rodent studies also describing DEHP as anti-androgenic it can be concluded that DEHP causes adverse effects that most likely occur through an endocrine mode of action.

Reduced growth in fish: Zanotelli et al. (2010) exposed guppy (Poecilia reticulate) from less than one week old at the beginning and 91 days ahead to $0.1 - 10 \mu g/L$ DEHP. From 14 days after the start of exposure, guppies treated with $10\mu g/L$ showed significantly reduced body length as compared with control fish. The inhibitory effect of DEHP was concentration-dependent and increased with time, leading to a maximal reduction in body length of 15 and 40% at 1 and 10 $\mu g/I$ DEHP, respectively. The effect was even more pronounced for body weight, which was diminished by up to 40 and 70% at 1 and 10 $\mu g/I$ DEHP, respectively. The reduction in growth was still significant at 91 days of DEHP treatment. The MoA for the reduced growth cannot be definitively concluded but the findings are not in contradiction to an anti-thyroid effect s hypothesis supported by the *in vitro* anti-thyroid effects of DEHP observed by Sun et al. (2012).

Conclusion: One study reports a significant and concentration dependent growth reduction. This might be induced by DEHP through a thyroid disrupting mode of action, but a final conclusion cannot currently be drawn because no specific thyroidal endpoints have been developed for fish.

Changed developmental time in amphibians: Dumpert and Zietz (1983) observed the development time (egg to fully developed frog) was doubled compared to the control in a long term study on the clawed toad *Xenopus laevis* at 2 mg/L DEHP (measured concentration).

Conclusion: A changed developmental time in an amphibian species was caused by DEHP exposure and could be anti-thyroidal but a final conclusion of MoA cannot be drawn as the effects is not specific to only substances causing thyroidal effects.

Reduced reproductive output in fish: Ye et al. (2014) observed decreased egg production of female Marine medaka (*O. melastigma*) after 6 month exposure from the larval stage to either DEHP (0.1 and 0.5 mg/L) or MEHP (0.1 and 0.5 mg/L). Moreover, exposure to both DEHP and MEHP resulted in a reduction in the fertilization rate of oocytes spawned by untreated females paired with treated males. Besides, DEHP induced histological changes in the testes and ovaries: the testes displayed a reduced number of spermatozoa, and the

ovaries displayed an increased number of atretic follicles. Uren-Webster et al. (2010) investigated the effects of DEHP on the reproductive health of male zebrafish (*Danio rerio*). Males treated with 5000mg DEHP kg⁻¹ (body weight) for a period of 10 days via intraperitoneal injection resulted in a reduction in fertilization success of oocytes spawned by untreated females. Carnevali et al. (2010) exposed female *Danio rerio* to environmentally relevant doses of DEHP (20 ng – 40 µg/L) and a significant decrease in ovulation and embryo production was observed for all doses. The embryo production in the 40 µg/l dose was about 1% of control production. Corradetti et al 2013 observed a >90% decreased embryo production (P<0.01) after exposure of male zebrafish (*Danio rerio*) to 0.2 µg/l DEHP for three weeks. The authors hypothesize that the effect is a result of impaired male reproductive behaviour and testes hormone production. Norman et al. (2007) observed a statistical significant induction of ovo/testis in the highest exposure group of 1500 mg/kg in male *S. salar*.

Conclusion: DEHP reduced the reproductive output in fish significantly, especially by affecting males and a likely MoA is estrogenic and/or anti-androgenic effects on the male reproductive system but no definitive conclusion can be made.

Overall conclusion all available references taken together:

Overall DEHP acts as a weak estrogen and/or anti-androgen changing the sex ratio of fish in one study, inducing ovo-testis in another, decreasing reproductive output in combination with Vtg induction in a third study as well as decreasing male reproductive output in a fourth study. Further available studies support this conclusion and other studies suggest that DEHP may possibly also have thyroid effects in fish and/or amphibian species.

5.1.4 Endocrine mode of action

Several scientific papers describe the influence of DEHP on the endocrine system in fish. Most well-described are the effects on vitellogenin concentrations, steroidogenesis and the reproductive system of both male and female fish.

Effects on vitellogenin (Vtg) in vivo: Vitellogenin induction or reduction as seen in several studies (Kim et al., 2002; Caunter et al., 2004; Carnevali et al., 2010; Wang et al., 2013; Ye et al., 2014) is regarded as an endocrine specific effect at concentrations below systemic toxicity, even though it is not regarded as adverse. Effects on vitellogenin concentration in fish after waterborne and/or food exposure to DEHP has been investigated in several studies: Caunter et al. (2004) observed increased Vtg concentrations in F2 female fathead minnow exposed to 5 µg/l DEHP in water and 500 mg/kg in food for three generations. Also male fish from the same study had increased Vtg concentrations although not significant using conservative statistics. Vtg was analyzed semi-guantitatively in Japanese medaka (Oryziaz latipes) by Kim et al. (2002) after a chronic exposure from 1 or 2 days post-hatch (dph) until the age of 3 months to the nominal concentrations 1, 10 or 50 µg DEHP/I. A decline in female Vtg concentration was observed but n=1 per treatment concentration hampers the result and the study results are not included in the conclusion. Juvenile salmon were injected intraperitoneally (total dose of 160 mg DEHP kg⁻¹ bw during 17 days). No vitellogenin was detected in the blood of the DEHP injected fish (Norrgren et al., 1999). Ye et al. (2014) observed significant increase in liver Vtg concentration in males after exposure of marine medaka (Oryzias melastigma) from hatch to 6 month post hatch to 0.1 and 0.5 mg/l DEHP. A significant increase in the levels of hepatic vitellogenin (Vtg) gene transcription was observed in both female (LOEC 12.8 μ g/l) and male (LOEC 39.4 μ g/l) adult Chinese rare minnow (Gobiocypris rarus) after exposure to DEHP for a 21-d period (Wang et al., 2013). Carnevali et al. (2010) reported increase of plasma vitellogenin levels in female zebrafish (Danio rerio) exposed for three weeks, in semi-static conditions, to nominal 0.02, 0.2, 2, 20 and 40 mg/l concentrations of DEHP.

Conclusion: Summarising the weight of evidence DEHP induces vitellogenin protein or genes in most of the tested fish species, indicating an estrogenic mode of action and/or interference with steroid hormone synthesis as also observed in rodent studies described in section 4.

Effects on steroidogenesis in vivo: Steroidogenic effects were also reported in several fish studies (Crago & Klaper, 2012; Wang et al., 2013; Ye et al., 2014). These effects are regarded as endocrine specific, but are on their own not regarded as adverse. Wang et al. (2013) demonstrated several effects on steroidogenesis in Chinese rare minnow (G. rarus): ERa was significantly up-regulated in the liver of males and females and the authors argue that DEHP might act directly on ER genes, especially ERa, to stimulate Vtg synthesis. Exposure to DEHP caused a significant decrease of E2 and an increased T/E2 ratio in females but a significant increase of E2 and decreased T/E2 ratio in males. These results could be explained by significant changes in both CYP17 and CYP19a gene transcriptions. Crago & Klaper (2012) observed decreased plasma E2 concentrations in male fathead minnow (P. promelas) after 28 days exposure to 12 μ g/l DEHP. Ye et al. (2014) observed a significant increase in plasma 17 β estradiol (E2) along with a significant decrease in testosterone (T)/E2 ratio (to less than 1/3 of control ratio) in male O. melastigma (LOEC 0.1 mg/L). A significant decrease in testosterone (T)/E2 ratios was also observed in males. Increased concentrations of T and E2 were observed in females. Han et al. (2009) studied the effect of DEHP on sex hormones in common carp (Cyprinus carpio) but because the tested concentrations from 5.5 to 20.5 mg/L DEHP are several orders of magnitude above DEHP water solubility and no solvent information is presented, the results of the paper are not discussed.

Conclusion: Overall DEHP up-regulate ER-genes, changing T/E2 ratios and affecting aromatase transcriptions, indicating an estrogenic mode of action.

Mechanistic information from in vitro studies: Beside the above presented *in vivo* studies a few *in vitro* studies using fish hepatocytes have shown significant increase in Vtg mRNA transcripts levels or Vtg protein levels, which could give mechanistic support to an estrogenic mode of action of DEHP exposure (Uhren-Webster et al., 2010; Maradonna et al., 2013). Interaction with the estrogen receptor (ERa reporter gene assay – LOEC 80 µg/l) as well as the thyroid receptor (TR-mediated reporter gene assay – LOEC 800 µg/l) of DEHP has been demonstrated *in vitro* (Sun et al., 2012). In a MCF-7 breast cancer cell line, DEHP significantly affected concentrations of E2 in media where exposure to 10 mg DEHP/L resulted in 4-fold greater concentration of E2 (Mankidy et al., 2013). In the latter case, it should be noted that the exposure concentration causing effect exceed the water solubility of DEHP by orders of magnitude.

Conclusion: Overall the mechanistic studies show that DEHP acts as an estrogen agonist increasing Vtg mRNA and/or Vtg proteins as well as E2 levels *in vitro*. Interaction with the estrogen receptor and the thyroid receptors has also been reported, supporting the hypothesis about estrogenic and thyroid disrupting modes of action.

5.1.5 Plausible link between adverse effects and endocrine mode of action

As seen from the ecotoxicological studies described above, several endocrine pathways could be affected by DEHP. Estrogenic MoA is evident from several studies (Norrgren et al., 1999; Norman et al., 2007; Carnevali., et al 2010; Corradetti et al 2013) but in addition as for the rodent studies, an anti-androgenic MoA may also be involved based on the observed decline of the male serum T/E2 ratio by Wang et al., 2013 and Ye et al., 2014.

Thyroid disrupting effects were not confirmed in any of the *in vivo* studies but could be the MoA causing effects on growth and development in both amphibians and fish (Dumpert & Zietz, 1983; Zanotelli et al., 2009). Mechanistic studies *in vitro* support a possible thyroid disrupting mode of action of DEHP.

Looking at the studies overall, it is biologically highly plausible that the adverse effects on the phenotypic sex and reproductive output in both male and female fish are induced by an

estrogenic MoA (Norrgren et al., 1999; Norman et al., 2007; Carnevali., et al 2010; Corradetti et al 2013). The estrogenic MoA of DEHP is further supported by observations of ovotestis (Norman et al., 2007), affected Vtg and steroidogenesis *in vivo*, and mechanistic studies *in vitro*.

5.1.6 Summary - Environment

Fish: DEHP acts as a weak estrogen agonist *in vivo* by 1) inducing vitellogenin in several species, including fathead minnow (*P. promelas*), marine medaka (*O. melastigma*), Chinese rare minnow (*G. rarus*) and zebrafish (*D. rerio*) and 2) affecting stereoidogenesis by upregulating ER-genes, changing T/E2 ratios and affecting aromatase transcriptions also in several species, including fathead minnow (*P. promelas*), marine medaka (*O. melastigma*) and Chinese rare minnow (*G. rarus*). This alteration of the endocrine system can be coupled to a study observing skewing of the phenotypic sex of *S. salar* and another study on *S. salar* observing ovotestis and observed effects on a decrease in reproductive output for some species, including both sexes of the zebrafish (*D. rerio*) and both sexes of the marine medaka (*O. melastigma*). It should be noted that no effects on sex ratio or gonads were seen in Japanese medaka (*O. latipes*) after exposure from 0-90 days post hatch (Metcalfe et al., 2001). A few available *in vitro* studies using fish hepatocytes have confirmed the hypothesis of DEHP being an estrogen agonist by increasing vitellogenin mRNA and/or vitellogenin proteins and E2 levels. Anti-estrogenic and anti-thyroid effects were reported in one study.

Looking at the studies overall, it is biologically highly plausible that the adverse effects on the phenotypic sex and reproductive output in both male and female fish are induced by an estrogenic MoA (Norrgren et al., 1999; Norman et al., 2007; Carnevali., et al 2010; Corradetti et al 2013). The estrogenic MoA of DEHP is further supported by observations of ovotestis (Norman et al., 2007), affected Vtg and steroidogenesis *in vivo*, and mechanistic studies *in vitro*.

Thyroid disrupting effects were not confirmed in any of the *in vivo* studies but could be the MoA causing effects on growth and development in both amphibians and fish (Dumpert & Zietz, 1983; Zanotelli et al., 2009). Mechanistic studies *in vitro* support a possible thyroid disrupting mode of action of DEHP.

Mammals: The severity of effects of DEHP on rodents (impact on development and reproduction) as presented in chapter 4 are generally accepted as endpoints of concern and as such accepted for reaching conclusions in regulatory hazard (and risk) assessment. Furthermore developmental and reproductive effects such as those of DEHP are particular concern in relation to mammalian wildlife (inclusive endangered species), where the described reproductive effects are expected to cause serious effects at population level because of a natural low reproductive output of such taxa.

6 Conclusions on the SVHC Properties

6.1 Conclusion on fulfilment of WHO definition of endocrine disruptor

A summary of the findings in chapters 4 and 5 are compared with the definition of an endocrine disrupter as given by WHO/IPCS, and as further elaborated by the European Commission's Endocrine Disrupters Expert Advisory Group (JRC 2013) on elements for identification of an endocrine disrupter.

According to the widely accepted working definition of an endocrine disruptor by the WHO/IPCS (WHO/International Programme on Chemical Safety 2002), an "*endocrine disruptor is an exogenous substance or mixture that*

1) alters function(s) of the endocrine system and 2) consequently causes 3) adverse health effects in an intact organism, or its progeny, or (sub)populations."

This has been further elaborated by the European Commission's Endocrine Disrupters Expert Advisory Group that has recommended that for a substance to be identified as an endocrine disruptor, available information should be assessed as regards the following topics:

1) Adverse effects

- 2) Endocrine mode of action
- 3) Plausible link between adverse effects and endocrine mode of action
- 4) Human relevance (for human health only)

In relation to effects on wildlife (the environment) the above mentioned topic 4) human relevance is replaced with "environmental relevance" (see section "5.1.1 General approach – Environment"). Hence the fourth issue that should be considered as regards endocrine disrupters in relation to the environment is – not as for human health, human relevance – but rather environmental relevance, i.e. whether the adverse effects observed are also likely to cause effects at the population level.

Re 1) The spectrum of effects observed in male rats include increased incidence of nipple retention and genital malformations, decreased anogenital distance, , reduced number of spermatocytes and testicular changes including multinucleated gonocytes, tubular atrophy and Leydig cell hyperplasia of which almost all are considered as adverse (OECD 2008). DEHP causes adverse –and serious – reproductive toxicity effects in rodents and a harmonized classification Repr. 1 B has been concluded.

Adverse effects caused by DEHP have also been identified in non-mammalian wildlife where change of the sex ratio or induction of ovo-testes in male fish have been observed in some studies and in addition decrease of the reproductive output was observed in other fish studies.

Re 2) DEHP has been shown to adversely affect the endocrine system of mammals primarily through *in vivo* findings on reduced fetal testosterone. These findings are further substantiated by mechanistic findings, also *in vivo*, of down-regulation of genes in the steroidogenic biosynthesis pathway. In fish DEHP also shows clear estrogenic activity. Several studies in fish indicate that DEHP has an estrogenic MoA which is likely to cause the observed sex reversal of male fish and / or to affect the reproductive output. Hence the current data in fish also indicates that DEHP has endocrine disruptive properties leading to serious effects related to sexual development and reproduction.

Re 3) The link between the endocrine mode of action of DEHP has been concluded in numerous investigations in rodents (mode of action on the steroidogenic biosynthesis pathway) and has also been shown in fish (estrogenic mode of action). It is considered biologically highly

plausible that the observed adverse effects in rats and fish are linked to the endocrine disrupting mode of action of DEHP and its metabolite MEHP.

Re 4) DEHP causes serious adverse reproductive toxicity effects in rodents and based on an assessment of human relevance using also other available information, a harmonized classification Repr. 1B has been concluded. It is likely that ED related adverse effects in untested mammalian wildlife species can also be caused by DEHP. The ED MOA and reproductive toxicity data from laboratory rodents are highly relevant for at least some mammalian wildlife species due to the similarities between mammalian species and their hormone systems. In respect to non-mammalian wildlife, sex reversal and reduced reproductive output are both regarded as serious population relevant adverse effect endpoints in fish. The laboratory ED MOA and reproductive toxicity data on fish are relevant for at least some wildlife fish species. Hence environmental relevance can be concluded.

In relation to the environment, adverse effects concerning development and reproduction are generally regarded as endpoints of particular relevance because such effects are likely to manifest themselves at the population level. The effects observed in rats are of particular concern for wildlife species with a natural low reproductive output, (including endangered species) as negative effects on reproduction has an even higher potential for causing long term negative effect at the population level for such taxa.

In conclusion, when available information from mammalian and ecotoxicological studies are combined, DEHP can be considered an endocrine disruptor for the environment as it fulfils the WHO/IPCS definition of an endocrine disruptor, the recommendations from the European Commission's Endocrine Disrupters Expert Advisory Group for a substance to be identified as an endocrine disruptor

6.2 Conclusion on fulfilment of Article 57(f)

Article 57(f) states that: "substances – such as those having endocrine disrupting properties or those having persistent, bioaccumulative and toxic properties or very persistent and very bioaccumulative properties, which do not fulfil the criteria of points (d) or (e) – for which there is scientific evidence of probable serious effects to human health or the environment which give rise to an equivalent level of concern to those of other substances listed in points (a) to (e) and which are identified on a case-by-case basis in accordance with the procedure set out in Article 59."

Environment

When assessing whether DEHP, fulfilling the WHO/IPCS definition of an endocrine disruptor for the environment, also fulfils Article 57(f), the following elements are considered:

Re. endocrine disrupting properties

In fish, DEHP acts as a weak estrogen agonist in vivo by 1) inducing vitellogenin in several species, including fathead minnow (P. promelas), marine medaka (O. melastigma), Chinese rare minnow (G. rarus) and zebrafish (D. rerio) and 2) affecting stereoidogenesis by upregulating ER-genes, changing T/E2 ratios and affecting aromatase transcriptions also in several species, including fathead minnow (P. promelas), marine medaka (O. melastigma) and Chinese rare minnow (G. rarus).

Re. scientific evidence

Change in sex ratio of fish is regarded both as a population relevant adverse effect and also as a highly likely marker of endocrine disruption (in particular estrogenic MOA). This is further substantiated by *in vitro* studies where changes in vitellogenin level confirmed the hypothesis of DEHP as an estrogen agonist. The estrogenic mode of action of DEHP is further supported by observations of ovotestis and affected vitellogenin and steroidogenesis *in vivo*. It is biologically highly plausible that the adverse effects on the phenotypic sex and reproductive output observed in some studies in fish are caused by an estrogenic MoA of DEHP.

Re. probable serious effects

DEHP has adverse effects on the phenotypic sex and reproductive output in both male and female fish. Skewing of the phenotypic sex was seen in *S. salar* and another study on *S. salar* observed ovotestis.Further, a decrease in reproductive output for some species, including both sexes of the zebrafish (*D. rerio*) and both sexes of the marine medaka (*O. melastigma*) was also observed. Reproductive effect on zebrafish for DEHP occurs at concentrations of 0.02 ug/l or less (Carnevali et al. 2010 and Corradetti et al. 2013). It is noted that no effects on sex ratio or gonads were observed in Japanese medaka (*O. latipes*) after exposure in 0-90 days post hatch so significant differences in the sensitivity between fish species or not fully known exposure or bioavailability related factors in the conduced tests may have been involved. A few *in vitro* studies available using fish hepatocytes have confirmed the hypothesis of DEHP being an estrogen agonist by increasing vitellogenin mRNA and/or vitellogenin proteins and E2 levels.

Re. equivalent level of concern

- Potential severity of ecotoxicological effects: DEHP may adversely affect the reproductive ability of fish populations by changing male fish into female fish and may also according to some investigations directly reduce fish fecundity. Such reproductive effects are considered an adverse and serious effect with population level relevance. DEHP also as mentioned above causes developmental and reproductive toxicity effects in laboratory rat, which due to the general conservation of hormone systems between different mammalian species is also an appropriate animal model for other mammalian wildlife species.
- *Irreversibility of effects:* Endocrine modulation is a very complex feedback process that is set up during critical early life stages in fish and mammalian species. Change in sex ratio of fish populations is an irreversible effect with long term implications on both the population itself and populations of other species dependent on this population. If for example the sex ratio of a fish population becomes significantly skewed and male fish becomes too scarce the population will not be able to maintain its size or may go through "a genetic bottle neck" reducing its natural genetic variability and thereby potentially diminishing the adaptation of the population to environmental changes.
- Broad environmental relevance: Effects on reproductive ability via an estrogenic mode of action has a broad environmental relevance. Due to the conservatism of estrogen receptors it is very likely that a wide range of wildlife species with different function in the ecosystems could be affected. The observed potential for bioaccumulation in aquatic organisms further strengthens the concern. Further, the severity of effects of DEHP on rodents are of particular concern in relation to mammalian wildlife (inclusive endangered species), where the described reproductive effects are expected to cause serious effects at population level because of a natural low reproductive output of such taxa.
- Finally, no toxicological threshold for the endocrine disruption caused reproductive toxic effects has yet been scientifically proposed, discussed and concluded and/or agreed for DEHP.

6.3 Conclusion

Bis(2-ethylhexyl) phthalate (DEHP) is identified as a substance of very high concern in accordance with Article 57(f) of Regulation (EC) 1907/2006 (REACH) because it is a substance with endocrine disrupting properties for which there is scientific evidence of probable serious effects to the environment which give rise to an equivalent level of concern to those of other substances listed in points (a) to (e) of Article 57 REACH.

DEHP has been shown to adversely affect the endocrine system of mammals primarily through *in vivo* findings on reduced fetal testosterone. These findings are further substantiated by

mechanistic findings, also *in vivo*, of down-regulation of genes in the steroidogenic biosynthesis pathway. The spectrum of effects observed in male rats include increased incidence of nipple retention and genital malformations, decreased anogenital distance, reduced number of spermatocytes and testicular changes including multinucleated gonocytes, tubular atrophy and Leydig cell hyperplasia of which almost all are regarded as adverse (OECD 2008).

In relation to the environment, adverse effects concerning development and reproduction are generally regarded as endpoints of particular relevance because such effects are likely to manifest themselves at the population level. The effects observed in rats are of particular concern for mammalian wildlife species with a natural low reproductive output, (including endangered species) as negative effects on reproduction has an even higher potential for causing long term negative effect at the population level for such taxa.

Adverse effects caused by exposure to DEHP have also been identified in non-mammalian wildlife where the sex ratio and reproductive output was affected in fish. Furthermore, several studies in fish indicate that DEHP has an estrogenic MoA which may cause the sex reversal of male fish to female fish and / or affect the reproductive output. Hence the current data indicates also in fish that DEHP has endocrine disruptive properties leading to adverse effects related to sexual development and reproduction.

In conclusion, when available information from mammalian and ecotoxicological studies are combined, DEHP can be considered an endocrine disruptor for the environment as it fulfils the WHO/IPCS definition of an endocrine disruptor and the recommendations from the European Commission's Endocrine Disrupters Expert Advisory Group for a substance to be identified as an endocrine disruptor.

DEHP is considered as a substance giving rise to an equivalent level of concern because scientific evidence shows that exposure during sensitive time windows of development may cause irreversible developmental programming effects leading to severe effects on development and reproduction, regarded as particularly serious in relation to wildlife species, also because these adverse effects may first manifest themselves in later life stages as a consequence of exposure during early life stages. Adverse effects on development and reproduction are in addition generally regarded as population relevant endpoints of concern, and as such frequently used for regulatory hazard and risk assessment for environmental species.

References

Agarwal DK, Eustis S, Lamb IV JC, Jameson CW and Kluwe WM (1986a) Influence of dietary zinc on di(2-ethylhexyl) phthalate-induced testicular atrophy and zinc depletion in adult rats. Toxicol. Appl. Pharmacol. 84, 12-24.

Agarwal DK, Eustis S, Lamb IV JC, Reel JR and Kluwe WM (1986b). Effects of di(2-ethylhexyl) phthalate on the gonadal pathophysiology, sperm morphology, and reproductive performance of male rats. Environ. Health Perspect. 65, 343-350.

Akingbemi BT, Youker RT, Sottas CM, Ge R, Katz E, Klinefelter GR, Zirkin BR, Hardy MP. Modulation of rat Leydig cell steroidogenic function by di(2-ethylhexyl)phthalate. Biol Reprod. 2001 Oct;65(4):1252-9.

Albert O, Jégou B.A critical assessment of the endocrine susceptibility of the human testis to phthalates from fetal life to adulthood. Hum Reprod Update. 2014 Mar-Apr;20(2):231-49.

Andrade AJ, Grande SW, Talsness CE, Gericke C, Grote K, Golombiewski A, Sterner-Kock A, Chahoud I. A dose response study following in utero and lactational exposure to di-(2-ethylhexyl) phthalate (DEHP): reproductive effects on adult male offspring rats. Toxicology. 2006 Nov 10;228(1):85-97

Arcadi FA, Costa C, Imperatore C, Marchese A, Rapisarda A, Salemi M, Trimarchi GR, Costa G. Oral toxicity of bis(2-ethylhexyl) phthalate during pregnancy and suckling in the Long-Evans rat. Food Chem Toxicol. 1998 Nov;36(11):963-70.

Atanassova, N. N., Walker, M., McKinnell, C., Fisher, J. S., and Sharpe, R. M. (2005). Evidence that androgens and oestrogens, as well as folliclestimulating hormone, can alter Sertoli cell number in neonatal rat. J Endocrinol 184, 107–17.

Barlow NJ, Phillips SL, Wallace DG, Sar M, Gaido KW, Foster PM. Quantitative changes in gene expression in fetal rat testes following exposure to di(n-butyl) phthalate. Toxicol Sci. 2003 Jun;73(2):431-41.

Bell, F. P., Patt, C. S., and Gillies, P. J. (1978). Effect of phthalate esters on serum cholesterol and lipid biosynthesis in liver, testes, and epididymal fat in the rat and rabbit. Lipids 13, 673–8.

Borch J, Ladefoged O, Hass U, Vinggaard AM. Steroidogenesis in fetal male rats is reduced by DEHP and DINP, but endocrine effects of DEHP are not modulated by DEHA in fetal, prepubertal and adult male rats. Reprod Toxicol. 2004 Jan-Feb;18(1):53-61.

Borch J, Metzdorff SB, Vinggaard AM, Brokken L, Dalgaard M. Mechanisms underlying the antiandrogenic effects of diethylhexyl phthalate in fetal rat testis. Toxicology. 2006 Jun 1;223(1-2):144-55

Bowman,C.J.; Barlow, N.J.; Turner, K.J.; Wallace, D.G.; Foster, P.M.D. Effects of *in utero* exposure to finasteride on androgen-dependent reproductive development in the male rat. Toxicological Sciences. 2003 74:393-406.

Carnevali O, Tosti L, Speciale C, Peng C, Zhu Y, Maradonna F. 2010. DEHP Impairs Zebrafish Reproduction by Affecting Critical Factors in Oogenesis. PLOS One Vol. 5 Issue 4.

Caunter JE, Williams TD and Shillabeer N (2004), Di-2-Ethylhexylphtalate: Multi-generation study with the fathead minnow (Pimephales promelas). Sudy No AJ0172. Performed by Brixham environmental laboratory Astra Zeneca UK Ltd, sponsored by European Council for Plasticisers and Intermediates.

Chauvigné F, Menuet A, Lesné L, Chagnon MC, Chevrier C, Regnier JF, Angerer J, Jégou B. Time- and dose-related effects of di-(2-ethylhexyl) phthalate and its main metabolites on the function of the rat fetal testis in vitro. Environ Health Perspect. 2009 Apr;117(4):515-21.

Chikae M, Hatano Y, Ikeda R, Morita Y, Hasan Q and Tamiya E (2004a). Effects of bis(2-ethylhexyl) phthalate and benzo[a]pyrene on the embryos of Japanese medaka (Oryzias latipes). Environ. Toxicol. Pharmacol. 16 (3), 141-145.

Chikae M, Ikeda R, Hatano Y, Hasan Q, Morita Y and Tamiya E (2004b). Effects of bis(2ethylhexyl) phthalate, γ -hexachlorocyclohexane, and 17 β -estradiol on the fry stage of medaka (Oryzias latipes). Environ. Toxicol. Pharmacol. 18 (1), 9-12.

Christiansen S, Boberg J, Axelstad M, Dalgaard M, Vinggaard AM, Metzdorff SB, Hass U. Lowdose perinatal exposure to di(2-ethylhexyl) phthalate induces anti-androgenic effects in male rats. Reprod Toxicol. 2010 Sep;30(2):313-21.

Corradetti B, Stronati A, Tosti L, Manicardi G, Carnevali O, Bizzaro D. Bis-(2-ethylexhyl) phthalate impairs spermatogenesis in zebrafish (Danio rerio). Reprod. Biol. 2013 Sept;13(3):195-202

Crago J, Klaper R. 2012. A mixture of an environmentally realistic concentration of a phthalate and herbicide reduces testosterone in male fathead minnow (Pimephales promelas) through a novel mechanism of action. Aquatic Toxicology 110–111 (2012) 74–83.

David RM. Proposed mode of action for in utero effects of some phthalate esters on the developing male reproductive tract. Toxicol Pathol. 2006;34(3):209-19.

DeFoe DL, Holcombe GW and Hammermeister DE (1990) Solubility and toxicity of eight phthalate esters to four aquatic organisms. Environ. Toxicol. Chem. 9, 623-636.

Den Hond E, Schoeters G. Endocrine disrupters and human puberty. Int J Androl. 2006 Feb;29(1):264-71; discussion 286-90.

Desdoits-Lethimonier C, Albert O, Le Bizec B, Perdu E, Zalko D, Courant F, Lesne L, Guille F, Dejucq-Rainsford N, and Jegou B. Human testis steroidogenesis is inhibited by phthalates. Human reproduction 2012 May;27(5):1451-9.

Dostal LA, Chapin RE, Stefanski SA, Harris MW and Schwetz BA (1988) Testicular toxicity and reduced Sertoli cell numbers in neonatal rats by di(2-ethylhexyl) phthalate and the recovery of fertility as adults. Toxicol. Appl. Pharmacol. 95, 104-121.

Dumpert K (1981) Die embryonalentwicklung des krallenfrosches (Xeonopus laevis) als biologisches prescreening – system für embryotoxische wirkungen von umveltchemikalien. Batelle Institut e.V. Frankfurt am Mian, Forschungsbericht 106 03 017, BleV-R-64.493-4, 52.

Dumpert K and Zietz E (1983) Platanna (Xeonopus laevis) as a test organism for determining the embryotoxic effects of environmental chemicals. Ecotoxicol. Environ. Safety 8, 55-74.

ECHA 2008. Member State Committee support document for identification of bis(2ethylhexyl)phthalate (DEHP) as a substance of very high concern. http://echa.europa.eu/documents/10162/13638/svhc_supdoc_dehp_publication_en.pdf

ECHA 2012. Background document to the Opinion on the Annex XV dossier proposing restrictions on four phthalates. <u>http://echa.europa.eu/documents/10162/3bc5088a-a231-498e-86e6-8451884c6a4f</u>

EU RAR, 2008. European Chemicals Bureau (2008). European Union, Risk Assessment Report, bis(2-ethylhexyl)phthalate (DEHP). <u>http://echa.europa.eu/documents/10162/e614617d-58e7-42d9-b7fb-d7bab8f26feb</u>

Foster PM, Thomas LV, Cook MW, Walters DG. Toxicol Lett. 1983 Feb;15(2-3):265-71. Effect of DI-n-pentyl phthalate treatment on testicular steroidogenic enzymes and cytochrome P-450 in the rat.

Freeman et al. (1981) The effects of Di-(2-ethylhexyl)-phthalate (DEHP) on steroid metabolism in the atlantic cod Gadhus morhua. Proceedings of the seventh annual aquatic toxicity workshop: November 5-7, 1980 Montreal, Quebec.

Gaido KW, Hensley JB, Liu D, Wallace DG, Borghoff S, Johnson KJ, Hall SJ, Boekelheide K. Fetal mouse phthalate exposure shows that Gonocyte multinucleation is not associated with decreased testicular testosterone. Toxicol Sci. 2007 Jun;97(2):491-503

Gazouli M, Yao ZX, Boujrad N, Corton JC, Culty M, Papadopoulos V. Effect of peroxisome proliferators on Leydig cell peripheral-type benzodiazepine receptor gene expression, hormone-stimulated cholesterol transport, and steroidogenesis: role of the peroxisome proliferator-activator receptor alpha. Endocrinology. 2002 Jul;143(7):2571-83.

Gray LE Jr, Ostby J, Furr J, Price M, Veeramachaneni DN, Parks L. Perinatal exposure to the phthalates DEHP, BBP, and DINP, but not DEP, DMP, or DOTP, alters sexual differentiation of the male rat. Toxicol Sci. 2000 Dec;58(2):350-65.

Gray LE Jr, Wolf C, Lambright C, Mann P, Price M, Cooper RL and Ostby J (1999) Administration of potentially antiandrogenic pesticides (procymidone, linuron, iprodione, chlozolinate, p,p[']-DDE, and ketoconazole) and toxic substances (dibutyl- and diethylhexyl phthalate, PCB 169, and ehthane dimethane sulphonate) during sexual differentiation produces diverse profiles of reproductive malformations in the rat. Toxicol. Ind. Health 15 (1-2), 94-118.

Habert R, Muczynski V, Lehraiki A, Lambrot R, Lécureuil C, Levacher C, Coffigny H, Pairault C, Moison D, Frydman R, Rouiller-Fabre V. Adverse effects of endocrine disruptors on the foetal testis development: focus on the phthalates. Folia Histochem Cytobiol. 2009;47(5):S67-74.

Hallmark N, Walker M, McKinnell C, Mahood IK, Scott H, Bayne R, Coutts S, Anderson RA, Greig I, Morris K, Sharpe RM. Effects of monobutyl and di(n-butyl) phthalate in vitro on steroidogenesis and Leydig cell aggregation in fetal testis explants from the rat: comparison with effects in vivo in the fetal rat and neonatal marmoset and in vitro in the human. Environ Health Perspect. 2007 Mar;115(3):390-6.

Han ZX, Lv CX, Li H. 2009. Effects of Bis(2-ethylhexyl) Phthalate on Sex Hormones of Common Carp (Cyprinus carpio) and the Protection of Zinc. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, 39:100–105.

Hannas BR, Lambright CS, Furr J, Howdeshell KL, Wilson VS, Gray LE Jr. Dose-response assessment of fetal testosterone production and gene expression levels in rat testes following in utero exposure to diethylhexyl phthalate, diisobutyl phthalate, diisoheptyl phthalate, and diisononyl phthalate. Toxicol Sci. 2011 Sep;123(1):206-16.

Hass U, Christiansen S, Alexstad M, Sørensen KD, Boberg J. 2013. Input for the REACH-review in 2013 on endocrine disrupters. Final report 21 March 2013. Danish Centre on Endocrine Disrupters. <u>http://mst.dk/media/mst/9106721/rapport input for the reach-review.pdf</u>

Heger NE, Hall SJ, Sandrof MA, McDonnell EV, Hensley JB, McDowell EN, Martin KA, Gaido KW, Johnson KJ, Boekelheide K. Human fetal testis xenografts are resistant to phthalate-induced endocrine disruption. Environ Health Perspect. 2012 Aug;120(8):1137-43

Hellwig J, Freudenberger H and Jäckh R (1997) Differential prenatal toxicity of branched phthalate esters in rats. Food Chem. Toxicol. 35, 501-512.

Hinton RH, Mitchell FE, Mann A, Chescoe D, Price SC, Nunn A, Grasso P, Bridges JW. Effects of phthalic acid esters on the liver and thyroid. Environ Health Perspect. 1986 Dec;70:195-210.

Hodge, H.C. (1954): Preliminary acute toxicity tests and short term feeding tests of rats and dogs given di-isobutyl phthalate and dibutyl phthalate. Office of Toxic substances, Microfiche No. 205995 v. 28.01.1983, 179; cited in BUA Report 201 (1997)

Howarth JA, Price SC, Dobrota M, Kentish PA, Hinton RH. Effects on male rats of di-(2-ethylhexyl) phthalate and di-n-hexylphthalate administered alone or in combination. Toxicol Lett. 2001 Apr 8;121(1):35-43.

Howdeshell KL, Wilson VS, Furr J, Lambright CR, Rider CV, Blystone CR, Hotchkiss AK, Gray LE Jr. A mixture of five phthalate esters inhibits fetal testicular testosterone production in the sprague-dawley rat in a cumulative, dose-additive manner. Toxicol Sci. 2008 Sep;105(1):153-65.

Huntingdon (1997) Phthalic acid, di(2-ethylhexyl) ester (DEHP): Study of embryo-foetal toxicity in the CD-1 mouse by oral gavage administration. Huntingdon, Report no 95/EHM007/0705.

Imperato-McGinley,J.; Binienda,Z.; Gedney,J.; Vaughan,E.D.,Jr. Nipple differentiation in fetal male rats treated with an inhibitor of the enzyme 5 alpha-reductase: definition of a selective role for dihydrotestosterone. Endocrinology. 1986 Jan; 118(1): 132-137.

Imperato-McGinley,J.; Binienda,Z.; Arthur,A.; Mininberg,D.T.; Vaughan,E.D.,Jr.; Quimby,F.W. The development of a male pseudohermaphroditic rat using an inhibitor of the enzyme 5-alpha reductase. Endocrinology. 1985 116(2):807-812.

Jacobson-Dickman E, Lee MM. The influence of endocrine disruptors on pubertal timing. Curr Opin Endocrinol Diabetes Obes. 2009 Feb;16(1):25-30

Johnson KJ, Heger NE, Boekelheide K. Of mice and men (and rats): phthalate-induced fetal testis endocrine disruption is species-dependent. Toxicol Sci. 2012 Oct;129(2):235-48.

Jones HB, Garside DA, Liu R and Roberts JC (1993) The influence of phthalate esters on Leydig cell structure and function in vitro and in vivo. Exp. Mol. Pathol. 58, 179-193.

JRC (2008). Bis(2-ethylhexyl) phthalate (DEHP) Summary Risk Assessment Report. http://echa.europa.eu/documents/10162/060d4981-4dfb-4e40-8c69-6320c9debb01

JRC (2013). Key scientific issues relevant to the identification and characterisation of endocrine disrupting substances. Report of the ED Expert Advisory Group (ED EAG). Reference Report by Munn S, Goumenou M, Joint Research Centre of the European Commission. European Union 2013.

Jugan ML, Levi Y, Blondeau JP. Endocrine disruptors and thyroid hormone physiology. Biochem Pharmacol. 2010 Apr 1;79(7):939-47.

Kang KS, Lee YS, Kim HS, Kim SH. DI-(2-ethylhexyl) phthalate-induced cell proliferation is involved in the inhibition of gap junctional intercellular communication and blockage of apoptosis in mouse Sertoli cells. J Toxicol Environ Health A. 2002 Mar;65(5-6):447-59.

Kim EJ, Kim JW and Lee SK (2002) Inhibition of oocyte development in Japanese medaka (Oryzias latipes) exposed to di-2-ethylhexyl phthalate. Environ. Int. 28, 359-365.

Kim TS, Yoon CY, Jung KK, Kim SS, Kang IH, Baek JH, Jo MS, Kim HS, Kang TS. In vitro study of Organization for Economic Co-operation and Development (OECD) endocrine disruptor screening and testing methods- establishment of a recombinant rat androgen receptor (rrAR) binding assay. J Toxicol Sci. 2010 Apr;35(2):239-43.

Kleymenova E, Swanson C, Boekelheide K, Gaido KW. Exposure in utero to di(n-butyl) phthalate alters the vimentin cytoskeleton of fetal rat Sertoli cells and disrupts Sertoli cell-gonocyte contact. Biol Reprod. 2005 Sep;73(3):482-90.

Klimisch H-J, Gamer AO, Hellwig J, Kaufmann W and Jäckh R (1992) Di(2-ethylhexyl) phthalate (DEHP): A short-term repeated inhalation toxicity study including fertility assessment. Fd. Chem. Toxic. 30, 915-919.

Klinefelter GR, Laskey JW, Winnik WM, Suarez JD, Roberts NL, Strader LF, Riffle BW, Veeramachaneni DN. Novel molecular targets associated with testicular dysgenesis induced by gestational exposure to diethylhexyl phthalate in the rat: a role for estradiol. Reproduction. 2012 Dec;144(6):747-61.

Krüger T, Long M, Bonefeld-Jørgensen EC. Plastic components affect the activation of the aryl hydrocarbon and the androgen receptor. Toxicology. 2008 Apr 18;246(2-3):112-23.

Kurata Y, Kidachi F, Yokoyama M, Toyota N, Tsuchitani M, Katoh M. Subchronic toxicity of Di(2-ethylhexyl)phthalate in common marmosets: lack of hepatic peroxisome proliferation, testicular atrophy, or pancreatic acinar cell hyperplasia. Toxicol Sci. 1998 Mar;42(1):49-56.

Kurata, et al., The Journal of Toxicological Science Vol.37, No.1, 34-39, 2012. Metabolisom of di(2-ethyl hexyl) phthalate (DEHP): comprative study in juvenile and fetal marmosets and rats.

Kurata, et al., Ibid, Vol. 37, No. 2, 401-414, 2012. Metabolite profiling and identification in human urine after single oral administration of DEHP.

Lamb IV JC, Chapin RE, Teague J, Lawton AD and Reel JR (1987) Reproductive effects of four phthalic acid esters in the mouse. Toxicol. Appl. Pharmacol. 88, 255-269.

Lambrot R, Muczynski V, Lécureuil C, Angenard G, Coffigny H, Pairault C, Moison D, Frydman R, Habert R, Rouiller-Fabre V. Phthalates impair germ cell development in the human fetal testis in vitro without change in testosterone production. Environ Health Perspect. 2009 Jan;117(1):32-7.

Lee KY, Shibutani M, Takagi H, Kato N, Takigami S, Uneyama C, Hirose M. Diverse developmental toxicity of di-n-butyl phthalate in both sexes of rat offspring after maternal exposure during the period from late gestation through lactation. Toxicology. 2004 Oct 15;203(1-3):221-38.

Lehmann, K. P., Phillips, S., Sar, M., Foster, P. M. D., and Gaido, K.W. (2004). Dosedependent alterations in gene expression and testosterone synthesis in the fetal testes of male rats exposed to di(n-butyl) phthalate. Toxicol Sci 81, 60–8.

Lehraiki A, Racine C, Krust A, Habert R, Levacher C. Phthalates impair germ cell number in the mouse fetal testis by an androgen- and estrogen-independent mechanism. Toxicol Sci. 2009 Oct;111(2):372-82.

Lenie S, Smitz J. Steroidogenesis-disrupting compounds can be effectively studied for major fertility-related endpoints using in vitro cultured mouse follicles. Toxicol Lett. 2009 Mar 28;185(3):143-52.

Li LH, Jester WF Jr, Laslett AL, Orth JM. A single dose of Di-(2-ethylhexyl) phthalate in neonatal rats alters gonocytes, reduces sertoli cell proliferation, and decreases cyclin D2 expression. Toxicol Appl Pharmacol. 2000 Aug 1;166(3):222-9.

Li, H., and Kim, K. H. (2003). Effects of mono-(2-ethylhexyl) phthalate on fetal and neonatal rat testis organ culture. Biol Reprod 69, 1964–72.

Li, L. H., Jester, W. F., and Orth, J. M. (1998). Effects of relatively low levels of mono-(2ethylhexyl) phthalate on cocultured sertoli cells and gonocytes from neonatal rats. Toxicol Appl Pharmacol 153, 258–65.

Liu K, Lehmann KP, Sar M, Young SS, Gaido KW. Gene expression profiling following in utero exposure to phthalate esters reveals new gene targets in the etiology of testicular dysgenesis. Biol Reprod. 2005 Jul;73(1):180-92

Lovekamp TN, Davis BJ. Mono-(2-ethylhexyl) phthalate suppresses aromatase transcript levels and estradiol production in cultured rat granulosa cells. Toxicol Appl Pharmacol. 2001 May 1;172(3):217-24.

Main KM, Mortensen GK, Kaleva MM, Boisen KA, Damgaard IN, Chellakooty M et al. Human breast milk contamination with phthalates and alterations of endogenous reproductive hormones in infants three months of age. Environmental Health Perspectives 2006; 114(2):270-276.

Mankidy R, Wisemana S, Maa H, Giesy JP. 2013. Biological impact of phthalates. Toxicology Letters 217. 50– 58.

Maradonna F, Evangelisti M, Gioacchini G, Migliarini B, Olivotto I, Carnevali O. 2013. Assay of vtg, ERs and PPARs as endpoint for the rapid in vitro screening of the harmful effect of Di-(2-ethylhexyl)-phthalate (DEHP) and phthalic acid (PA) in zebrafish primary hepatocyte cultures. Toxicology in Vitro 27 (2013) 84–91.

Martinez-Arguelles DB, Campioli E, Culty M, Zirkin BR, Papadopoulos V. Fetal origin of endocrine dysfunction in the adult: the phthalate model. J Steroid Biochem Mol Biol. 2013 Sep;137:5-17.

Mayer FL and Sanders HO (1973) Toxicology of pthalic acid esters in aquatic organisms. Environ. Health Perspect. 3, 153-157.

McKinnell C, Mitchell RT, Walker M, Morris K, Kelnar C JH, Wallace WH and Sharpe RM. Effect of fetal or neonatal exposure to monobutyl phthalate (MBP) on testicular development and function in the marmoset. Hum Reprod 2009; 24(9): 2244–2254.

Merkle J, Klimisch HJ and Jäckh R (1988) Developmental toxicity in rats after inhalation exposure of di(2-ethylhexyl) phthalate (DEHP). Toxicol. Lett. 42, 215-223 (1988).

Metcalfe CD, Metcalfe TL, Kiparassis Y, Koenig BG, Khan C, Hughes RJ, Croley TR, March RE and Potter T (2001) Estrogenic potency of chemicals detected in sewage treatment plant effluent as determined by in vivo assays with japanese medaka (Oryzias latipes). Environmental toxicology and chemistry vol. 20, No 2, pp 297-308.

Ministry of the Environment Japan (MOE, 2005): Effects of Substances ExTEND 2005 March 2005, <u>http://www.env.go.jp/en/chemi/ed/extend2005_full.pdf</u>

Ministry of the Environment, Japan (MOE, 2010): Further Actions to Endocrine Disrupting Effects of Chemical Substances EXTEND 2010 (Tentative Translation) July 2010,

http://www.env.go.jp/en/chemi/ed/extend2010_full.pdf

Mitchell RT, Childs AJ, Anderson RA, van den Driesche S, Saunders PT, McKinnell C, Wallace WH, Kelnar CJ, Sharpe RM. Do Phthalates Affect Steroidogenesis by the Human Fetal Testis? Exposure of Human Fetal Testis Xenografts to Di-n-Butyl Phthalate. J Clin Endocrinol Metab. 2012 Mar;97(3):E341-8.

Moore MR (1996) Oncogenicity study in rats with Di (2-ethylhexyl)phthalate including ancillary hepatocellular proliferation and biochemical analyses. Corning Hazleton Incorporated (CHV), 9200 Leesburg Pike, Vienna, Virginia 22182-1699. Laboratory Study Identification: CHV 663-134; Sponsor: Eastman Chemical Company, First America Center, P.O. Box 1994 Kingsport, Tennessee 37662-5394

Mylchreest E, Cattley RC, Foster PM. Male reproductive tract malformations in rats following gestational and lactational exposure to Di(n-butyl) phthalate: an antiandrogenic mechanism? Toxicol Sci. 1998 May;43(1):47-60.

Mylchreest E, Sar M, Cattley RC, Foster PM. Disruption of androgenregulated male reproductive development by di(n-butyl) phthalate during late gestation in rats is different from flutamide. Toxicol Appl Pharmacol 1999; 156(2):81-95.

Mylchreest E, Wallace DG, Cattley RC, Foster PM. Dose-dependent alterations in androgen regulated male reproductive development in rats exposed to Di(n-butyl) phthalate during late gestation. Toxicol Sci. 2000 May;55(1):143-51.

Nef, S., and Parada, L. F. (1999). Cryptorchidism in mice mutant for Insl3. Nat Genet 22, 295–9.

Norman A, Börjeson H, David F, Tienpont B and Norrgren L (2007) Studies of uptake, elimination and late effects in Atlantic salmon (Salmo salar) dietary exposed to di-2-ethylhexyl phthalate (DEHP) during early life. Archives of Environmental Contamination and Toxicology (AECT).

Norrgren L, Blom A, Andersson PL, Börjesson H, Larsson DGJ and Olsson P-E (1999) Effects of potential xenoestrogens (DEHP, nonylphenol and PCB) on sexual differentiation in juvenile Atlantic salmon (Salmo salar). Aquatic Ecosystem Health and Management, Vol 2/3. pp.311-317.

NTP (National Toxicology Program) (1982) Carcinogenesis bioassay of di(2-ethylhexyl) phthalate in F344 rats and B6C3F1 mice (feed study). NTP Technical Report No. 217, 01-82.

NRC 2008. Phthalates and Cumulative Risk Assessment: The Tasks Ahead. Committee on the Health Risks of Phthalates, National Research Council 2008

OECD 2012. Guidance Document on standardised test guidelines for evaluating chemicals for endocrine disruption. Series on Testing and Assessment No. 150. ENV/JM/MONO(2012)22.

OECD 2008. Guidance document on mammalian reproductive toxicity testing and assessment. Series on testing and assessment No. 43. ENV/JM/MON0(2008)16.

Parks LG, Ostby JS, Lambright CR, Abbott BD, Klinefelter GR, Barlow NJ, Gray LE Jr. The plasticizer diethylhexyl phthalate induces malformations by decreasing fetal testosterone synthesis during sexual differentiation in the male rat. Toxicol Sci. 2000 Dec;58(2):339-49.

Parmar D, Srivastava SP, Srivastava SP and Seth PK (1995) Testicular toxicity of di(2-ethylhexyl) phthalate in developing rats. Vet. Human. Toxicol. 37, 310-313.

Planelló R, Herrero O, Martínez-Guitarte JL, Morcillo G. 2011. Comparative effects of butyl benzyl phthalate (BBP) and di(2-ethylhexyl) phthalate (DEHP) on the aquatic larvae of *Chironomus riparius* based on gene expression assays related to the endocrine system, the stress response and ribosomes. Aquatic Toxicology. 105. 62–70.

Pocar P, Fiandanese N, Secchi C, Berrini A, Fischer B, Schmidt JS, Schaedlich K, Borromeo V. Exposure to di(2-ethyl-hexyl) phthalate (DEHP) in utero and during lactation causes long-term pituitary-gonadal axis disruption in male and female mouse offspring. Endocrinology. 2012 Feb;153(2):937-48.

Poon R, Lecavalier P, Mueller R, Valli VE, Procter BG, Chu I. Subchronic oral toxicity of di-noctyl phthalate and di(2-Ethylhexyl) phthalate in the rat. Food Chem Toxicol. 1997 Feb;35(2):225-39.

Schilling K, Gembardt C and Hellwig J (2001) Di-2-ethylhexyl phthalate - Two-generation reproduction toxicity study in Wistar rats. Continous dietary administration. Experimental Toxicology and Ecology, BASF Aktiengesellschaft, D-67056 Ludwigshafen, FRG. Laboratory project identification 70R0491/97139. 1183 pages. (referenced as BASF 70R0491/97139 in the IUCLID file)

Shioda T and Wakabayashi M (2000) Effect of certain chemicals on the reproduction of medaka (Oryzias latipes). Chemosphere 40, 39-243.

Shultz VD, Phillips S, Sar M, Foster PM, Gaido KW. Altered gene profiles in fetal rat testes after in utero exposure to di(n-butyl) phthalate. Toxicol Sci. 2001 Dec;64(2):233-42.

Spade DJ, Hall SJ, Saffarini C, Huse SM, McDonnell-Clark EV, Boekelheide K. Differential response to abiraterone acetate and di-n-butyl phthalate in an androgen-sensitive human fetal testis xenograft bioassay. Toxicol Sci. 2013 Nov 27. [Epub ahead of print]

Sun H, Si C, Bian Q, Chen X, Chena L. 2012. Developing in vitro reporter gene assays to assess the hormone receptor activities of chemicals frequently detected in drinking water. J. Appl. Toxicol. 32: 635–641.

Takeuchi, S., Iida, M., Kobayashi, S., Jin, K., Matsuda, T. and Kojima, H. (2005): Differential effects of phthalate esters on transcriptional activities via human oestrogen receptors a and β , and androgen receptors. Toxicology, 210, 223-233.

Tomonari Y, Kurata Y, David RM, Gans G, Kawasuso T, Katoh M. Effect of di(2-ethylhexyl) phthalate (DEHP) on genital organs from juvenile common marmosets: I. Morphological and biochemical investigation in 65-week toxicity study. J Toxicol Environ Health A. 2006 Sep;69(17):1651-72.

Toppari J, Virtanen HE, Main KM, Skakkebaek NE. Cryptorchidism and hypospadias as a sign of testicular dysgenesis syndrome (TDS): environmental connection. Birth Defects Res A Clin Mol Teratol. 2010 Oct;88(10):910-9.

Tyl RW, Price CJ, Marr MC and Kimmel CA (1988) Developmental toxicity evaluation of dietary di(2-ethylhexyl) phthalate in Fischer 344 rats and CD-1 mice. Fundam. Appl. Toxicol. 10, 395-412.

Uren-Webster TM, Lewis C, Filby AL, Paull GC, Santos EM. 2010. Mechanisms of toxicity of di(2-ethylhexyl) phthalate on the reproductive health of male zebrafish. Aquatic Toxicology 99 (2010) 360–369.

Veeramachaneni DN, Klinefelter GR. Phthalate-Induced Pathology in the Foetal Testis Involves More Than Decreased Testosterone Production. Reproduction. 2014 Mar;147(4):435-442

Wang X, Yang Y, Zhang L, Ma Y, Han J. 2013. Endocrine disruption by di-(2-ethylhexyl)-phthalate in Chinese rare minnow Gobiocypris rarus). Environmental Toxicology and Chemistry, Vol. 32, No. 8, pp. 1846–1854.

Welsh M, Saunders PT, Fisken M, Scott HM, Hutchison GR, Smith LB, Sharpe RM. Identification in rats of a programming window for reproductive tract masculinization, disruption of which leads to hypospadias and cryptorchidism. J Clin Invest. 2008 Apr;118(4):1479-90.

WHO/International Programme on Chemical Safety. Global assessment of the state-of-thescience of endocrine disruptors – 2002 (Damstra T, Barlow S, Bergman A, Kavlock R, Van Der Kraak G, eds.). http://www.who.int/ipcs/publications/new_issues/endocrine_disruptors/en/

Wilson VS, Lambright C, Furr J, Ostby J, Wood C, Held G, Gray LE Jr. Phthalate ester-induced gubernacular lesions are associated with reduced insl3 gene expression in the fetal rat testis. Toxicol Lett. 2004 Feb 2;146(3):207-15.

Wine RN, Li LH, Barnes LH, Gulati DK, Chapin RE. Reproductive toxicity of di-n-butylphthalate in a continuous breeding protocol in Sprague-Dawley rats. Environ Health Perspect 1997; 105(1):102-107.

Wolf C Jr, Lambright C, Mann P, Price M, Cooper RL, Ostby J, Gray LE Jr. Administration of potentially antiandrogenic pesticides (procymidone, linuron, iprodione, chlozolinate, p,p'-DDE, and ketoconazole) and toxic substances (dibutyl- and diethylhexyl phthalate, PCB 169, and

ethane dimethane sulphonate) during sexual differentiation produces diverse profiles of reproductive malformations in the male rat. Toxicol Ind Health. 1999 Jan-Mar;15(1-2):94-118

Wolfe et al. (2003) Multigeneration reproduction toxicity study in rats (unaudited draft): Diethylhexylphtalate: Multigenerational reproductive assessment by continuous breeding when administered to Sprague-Dawley rats in the diet. TherImmune Research Corporation (Gaithersburg, Maryland), TRC Study No 7244-200.

Ye T, Kang M, Huang Q, Fang C, Chen Y, Shen H, Dong S. 2014. Exposure to DEHP and MEHP from hatching to adulthood causes reproductive dysfunction and endocrine disruption in marine medaka(Oryzias melastigma). Aquatic Toxicology 146. 115–126.

Yu, X., Sidhu, J. S., Hong, S., and Faustman, E. M. (2005). Essential role of extracellular matrix (ECM) overlay in establishing the functional integrity of primary neonatal rat Sertoli cell/gonocyte co-cultures: an improved in vitro model for assessment of male reproductive toxicity. Toxicol Sci 84, 378–93.

Zanotelli, V. R. T.; Neuhauss, S. C. F.; Ehrengruber, M. U. 2010. Long-term exposure to bis(2ethylhexyl)phthalate (DEHP) inhibits growth of guppy fish (Poecilia reticulata) Journ. Appl. Toxicol. 30.1. 29-33.

Zhu, Z. P., Wang, Y. B., Song, L., Chen, L. F., Chang, H. C., and Wang, X. R. (2005). Effects of mono(2-ethylhexyl) phthalate on testosterone biosynthesis in Leydig cells cultured from rat testes. Nat J Androl 11, 247–51.

Annex 1 - DEHP. Studies considered most important in EU RAR 2008

The following table presents the studies considered most important (EU RAR 2008):				
Species, strain, number of animals	Protocol	Results	References	
Rat, Sprague-Dawley 17/males/group	3 generations via diet; 1.5, 100, 300, 1,000, 7,500 and 10,000 ppm (0.1, 0.5, 1.4, 4.8, 14, 46, 359 and 775 mg/kg/day	dose-dependent effets on numerous testis-related parameters. NOAEL for test.tox and dev. tox. 4.8 mg/kg/day, and 46 mg/kg/day for fertility	Wolfe et al, 2003	
Rat, Wistar, 25 animals/group	0, 1,000, 3,000 or 9,000 ppm DEHP via the diet (corresponding to approximately 0, 113, 340, or 1,088 mg/kg/day)	3,000 ppm; a reduced testis weight in F2, focal tubular atrophy and a feminisation of 49% of the male offspring. Minimal focal tubular atrophy also occurred at 1,000 ppm (113 mg/kg and day)	Schilling et al., 2001	
Rat, Wistar 10 males/group	4 weeks, <i>inhalation</i> , 0, 10, 50 or 1,000 mg/m3	no effects on male fertility, no testicular toxicity NOAEL 1,000 mg/m3	Klimisch et al. (1992)	
Rat, F344 24 males/group	60 days, <i>diet</i> 0, 320, 1,250, 5,000 or 20,000 ppm (0, 18, 69, 284 or 1,156 mg/kg bw/day)	Dose-dependent ↓in total body, testis, epididymis, and prostate weights from 5,000 ppm ↓mean litter size at 20,000 ppm correlated with degenerative testicular changes, ↓testicular zinc content, epididymal sperm density and motiliy, ↑number abnormal sperm cells NOAEL 320 ppm (69 mg/kg bw/day)	Agarwal et al. (1986a,b)	
rat, F344 48 males/group	gavage, 13 days 0, 330, 1,000 or 3,000 mg/kg bw/day and a diet containing 2, 20 or 20 ppm zinc	Testis: dose-dependent tubular degeneration and atrophy from 1,000 mg/kg bw DEHP combined with low-zinc diet (2 ppm) NOAEL 330 mg/kg bw/day	Agarwal et al. (1986a)	
rats, Sprague-Dawley 7-10 males/group	gavage, corn oil 5 days 0, 10, 100, 1,000 or 2,000 mg/kg bw/day at 1, 2, 3, 6 and 12 weeks of age neonatal exposure on days 6- 10 0, 100, 200, 500 or 1,000 mg/kg bw/day	↓absolute and relative testis weights at 1,000 mg/kg bw/day in 1, 2, 3,and 6-week old rats; ↓Sertoli cell nuclei in 1-weekold rats and loss of spermatocytes in 2- and 3-week old rats; ↓testis weight also in 6- and 12-week old rats at 2,000 mg/kg bw/day; fatalities in suckling rats at 2,000 mg/kg; NOAEL 100 mg/kg bw/day Testis: ↓ number of Sertoli cells in adult rats at 500 and 1,000 mg/kg bw, no effect on fertility after mating to untreated females	Dostal et al. (1988)	
rat, F344 10 rats/sex/group	13 weeks, diet 0, 1,600, 3,100, 6,300, 12,500 or 25,000 ppm (0, 80, 160, 320, 630, or 1,250 mg/kg/day)	↓bw at 25,000 ppm testis atrophy from 12,500 ppm NOAEL 6,300 ppm (320 mg/kg/day)	NTP (1982)	

The following table presents the studies considered most important (EU RAR 2008):

rat, F344	103 weeks, diet	↓bw at 12,000 ppm	NTP (1982)
50 rats/sex/group	0, 6,000, or 12,000 ppm (0,	Anterior pituitary: hypertrophy at	
	322,	12,000 ppm (22/49 males, 45%)	
	or 674 mg/kg/day [males])	Testis: seminiferous tubular	
		degeneration at 6,000 ppm	
		(2/44,	
		5%) and 12,000 ppm (43/48	
		males, 90%), histologically	
		devoid of germinal epithelium	
		and spermatocytes	
rat, Wistar	0, 50, 100, 250, or 500	dose-dependent and significant	Parmar et
6 males (25-day-old)	mg/kg	↑LDH and GGT and ↓SDH	al. (1995)
per dose group	bw for 30 days	from 50 mg/kg bw;	
		↑β-glucuronidase and	
		↓acid phosphatase	
		testis: marked destructive	
		changes in the advanced germ	
		cell layers and vacuolar	
		degeneration at 250 and 500	
		mg/kg	
rat, F344	104 weeks, diet	Pituitary: ↑castration cells (30/60	Moore
70-85/sex/group	0, 100, 500, 2500, or 12500	males) at 12500 ppm;	(1996)
recovery group:	ppm	Testis: ↓weight, ↑incidence and	
55/sex	(0, 5.8, 28.9, 146.6, or 789.0	severity of bilateral hypospermia	
	mg/kg bw/day [males]; 0,	at 12500 ppm;	
	7.3,	Epididymis: ↑immature or	
	36.1, 181.7, or 938.5 mg/kg	abnormal sperm forms and	
	bw/day [females] or 12500	hypospermia from 12500 ppm;	
	ppm	Changes in the testis and	
	for 78 weeks, followed by a	pituitary were not reversible	
	recovery period of 26 weeks	upon	
		cessation of exposure NOAEL for	
		testicular effects 500 ppm	
		(28.9 mg/kg bw/day)	
rat, Sprague-Dawley	13 weeks, diet	testis: mild Sertoli cell	Poon et al.
10 rats/sex/group	0, 5, 50, 500, or 5,000 ppm	vacuolation	(1997)
, , 5	(0,	at 500 ppm (7/10); decreased	()
	0.4, 3.7, 37.6, or 375.2	absolute and relative testicular	
	mg/kg	weight, mild to moderate Sertoli	
	bw/day [males])	cell vacuolation, testicular	
		atrophy and complete loss of	
		spermatogenesis at 5,000 ppm	
		(9/10), in-creased liver and	
		kidney weights (all rats of both	
		sexes), and mild histological	
		changes of the thyroid at 5,000	
		ppm	
		NOAEL 50 ppm (3.7 mg/kg	
		bw/day)	
mouse, B6C3F1	104 weeks, <i>diet</i>	Testis: from 1,500 ppm ↓weight,	Moore
70-85/sex/group;	0, 100, 500, 1,500 or 6,000	↑incidence and severity of	(1997)
recovery group:	ppm	bilateral hypospermia;	(1))))
55/sex	(0, 19.2, 98.5, 292.2 or	Epididymis: from 1,500 ppm ↑	
55/507	1,266.1	immature or abnormal sperm	
	mg/kg bw/day	forms and hypospermia;	
	[males] or 6,000 ppm	Changes in testes partially	
	followed	reversible; NOAEL 500 ppm	
	by a recovery period of 26	(98.5 mg/kg bw/day)	
	weeks	(90.5 mg/kg bw/uay)	
	WEEKS		
Rat, Sprague-Dawley	3 generations via diet;	dose-dependent effets on	Wolfe et al,
17/males/group	1.5, 100, 300, 1,000, 7,500	numerous testis-related	2003
	T T T T T T T T T T T T T T T T T T T		2005
17/males/group	and	parameters. NOAEL for test.tox	

			1
	10,000 ppm (0.1, 0.5, 1.4, 4.8,	and dev. tox. 4.8 mg/kg/day, and 46 mg/kg/day for fertility	
	14, 46, 359, and 775		
	mg/kg/day		
rat, Wistar	inhalation, head-nose,	↓number of live foetuses/dam	Merkle et
25 females/ group	gestation day 6-15	and ↑percentage of resorptions/dam at 50 mg/m3;	al. (1988)
	0, 0.01, 0.05, or 0.3 mg/litre	the effects showed, however, no	
	(0,	dose-response relationship.	
	10, 50, or 300 mg/m3)	NOAEL for maternal and developmental toxicity 300	
		mg/m3	
rat, F344/CrlBr	Diet	↓maternal food intake and mean	NTIS, 1984;
34-25 females/group	0, 0.5, 1.0, 1.5, or 2%	foetal bw from 0.5%; ↓maternal	Tyl et al.
	gestation days 0-20	bw gain, ↑absolute and relative liver	(1988)
	uays 0-20	weights, <i>i</i> foetal bw/litter from	
		1.0%	
		↑number and percentage of	
		resorptions, nonlive and affected implants/litter at 2%;	
		NOAEL for maternal and	
		developmental toxicity 0.5%	
rat Mictor		(~357 mg/kg bw/day)	PACE
rat, Wistar 9-10 females/group	<i>gavage</i> , oil 0, 40, 200 or	↓maternal bw and ↑maternal relative kidney and	BASF (1995);
	1,000 mg/kg bw/day on	liver weights at 1,000 mg/kg bw	Hellwig et
	gestation days 6-15	\downarrow number of live foetuses/dam, \downarrow	al. (1997)
		foetal body weights, ↑number of malformed foetuses/dam (tail,	
		brain, urinary tract, gonads,	
		vertebral column, and sternum)	
		at 1,000 mg/kg bw; NOAEL for	
		maternal and developmental toxicity 200 mg/kg/day	
mouse, 1-CR	<i>diet</i> ; 0, 0.025, 0.05, 0.10 or	↓maternal body weight gain	NTIS, 1984;
30-31 females/group	0.15%	from 0.10% (mainly due to \downarrow	Tyl et al.
	(0, 44, 91, 190.6 or 292.5 mg/kg bw/day);	uterine weight, ↓foetal body weight and number	(1988)
	gestation days 0-17	of live foetuses per litter); ↑	
		number and percent of	
		resorptions, late foetal deaths, dead and malformed foetuses,	
		and percent malformed	
		foetuses/litter from 0.05% (open	
		eyes, exophtalmia, exencephaly,	
		short, constricted or no tail); visceral malformations and	
		skeletal defects (fused and	
		branched ribs, mis-alignement,	
		and fused thoracic vertebral centra); NOAEL for maternal	
		toxicity 0.05% (91 mg/kg	
		bw/day)	
		and for develop-mental toxicity	
mouse, CD-1	oral, gavage	0.025% (44 mg/kg bw/day) foetotoxic effects at	Huntingdon
15 females/dose	0, 40, 200 or	200 mg/kg bw/day	(1997)
group30	1,000 mg/kg bw/day	↓number of viable foetuses	-
controls	gestation days 6-15	↑number of resorptions and post- implantation losses at 1,000	
		mg/kg bw/day and also	
		cardiovascular abnormalities, tri-	

breeding studies mouse, ICR 20 animals/sex/dose group, 40 control animals of each sex	<i>diet</i> , 98 days 0, 0.01, 0.1, or 0.3% (0, 20, 200 or 600 mg/kg bw/day)	lobed left lungs, fused ribs, fused thoracic vertebral centres and arches, immature livers, and kidney abnormalities NOAEL 200 mg/kg bw for maternal toxicity and NOAEL 40 mg/kg bw/day for developmental toxicity dose-dependent ↓in the number of litters and proportion of pups born alive from 0.1% (0.1%: 14/19 fertile, 0.3%: 0/18); ↑ absolute and relative liver weight (both sexes) and ↓reproductive organ weights and atrophy of seminiferous tubules at 0.3%; no effect on bw NOAEL for maternal and developmental toxicity 20 and 600 mg/kg bw/day, respectively. Crossover mating trial: treated males and control females: 4/20 fartile, control maternal	Lamb et al. (1987)
		fertile; control males and treated females: 0/16 fertile	
Rat, Sprague-Dawley 17/males/group	3 generations via diet; 1.5, 100, 300, 1,000, 7,500 and 10,000 ppm (0.1, 0.5, 1.4, 4.8, 14, 46, 359, and 775 mg/kg/day	dose-dependent effets on numerous testis-related parameters. NOAEL for test.tox and dev. tox. 4.8 mg/kg/day, and 46 mg/kg/day for fertility	Wolfe et al, 2003
Rat, Wistar, 25 animals/group	0, 1,000, 3,000 or 9,000 ppm DEHP via the diet (corresponding to approximately 0, 113, 340 or 1,088 mg/kg/day)	3,000 ppm; a reduced testis weight in F2, focal tubular atrophy and a feminisation of 49% of the male offspring. Minimal focal tubular atrophy also occurred at 1,000 ppm (113 mg/kg and day), which thus constitutes a conservatively chosen LOAEL	Schilling et al. (2001)
Rat, Wistar 10 rats/sex/group	diet, (range finding study) 0, 1,000, 3,000 or 9,000 ppm (0, 110, 339 or 1,060 mg/kg bw/day)	<pre>↑relative liver weight in F0 females from 1,000 ppm and in F0 males from 3,000 ppm (negative histopathology); ↓food consumption, body weight, and body weight gain and ↑postimplantation loss in females at 9,000 ppm; F1 pups : ↓number of delivered and live born pups and ↓viability index neonatally at 9,000 ppm; loss of spermatocytes at 3,000 ppm (2/10) and 9,000 ppm (7/9); ↑presence of areolas/nipple anlagen; retarded preputial separation and vaginal opening at 9,000 ppm; F1 parental animals : ↓ food consumption, body weight, and mortality in both sexes initially at 9,000 ppm and ↓ body weight gain in females;</pre>	Schilling et al. (1999)

		↓fertility, ↓testicular and	
		epididymal weight and size,	
		atrophy of the testes, Leydig cell	
		hyperplasia, interstitial oedema,	
		and altered spermatogenesis and	
		aspermia at 9,000 ppm;	
		doserelated	
		decrease of prostate	
		weight from 1,000 ppm;	
		F2 pups: ↑number of still born	
		pups from 3,000 ppm, ↓number	
		of delivered pups and mean	
		umber of pups/dam at 9,000	
mana CD 1	diat	ppm	NTIC
mouse, CD-1	diet,	↑prenatal mortality for F1-litters	NTIS
(number not	0.01, 0.025, or 0.05% (0, 19,	at 0.05%	(1988)
specified)	48	↓number of viable pups	
	or 95 mg/kg bw/day)	neonatally at 0.05%	
		NOAEL for parental toxicity and	
		F2-offspring: 0.05% (95 mg/kg	
		bw/day)	
		NOAEL for F1-offspring: 0.025%	
		(48 mg/kg bw/d)	
rat, Sprague-Dawley	Gavage, corn oil	two doses of 2,000 mg/kg bw	Dostal et al.
10 males/group	5 days from the age of 1	were fatal for most pups in the	(1987b)
	week, 2	three youngest age groups,	
	weeks, 3 weeks, 6 weeks, or	↓bw for 6- and 12-week-old rats	
	12 weeks	but no mortalities;	
	0, 10, 100, 1,000 or 2,000	5 doses of 1,000 mg/kg bw: ↓bw	
		gain in 1-, 2-, and 3-week-old	
	mg/kg		
	bw/day	rats;	
		↑absolute and relative liver	
		weights at 100 mg/kg bw/day in	
		all age groups (exept for 1-	
		weekold	
		rats) and in all age groups at	
		higher dose levels;	
		↓plasma cholesterol levels in	
		weanling and adult rats from	
		1,000 mg/kg/day	
Rat, Sprague-Dawley,	Pregnant rats, gavage, corn	DEHP was considerably more	Gray et al.,
8 pregnant	oil,	toxic than was DBP to the	1999
dams/group	GD 14 to PND 3	reproductive system of the male	
	750 mg/kg bw/day	offspring. ↑ incidence of both	
		reproductive and non-	
	Male offspring were killed at	reproductive malformations	
	about 5 months of age.	including decreased anogenital	
	about 5 months of age.		
		distance, areolas (88%),	
		hypospadias (67%), vaginal	
		pouch (45%), ventral prostate	
		agenesis (14%), testicular and	
		epididymal atrophy or agenesis	
		(90%), and retained nipples.	
	1	Several 8-day old pups displayed	
		haemorrhagic testes by gross	
		haemorrhagic testes by gross examination. \downarrow weight of the	
		haemorrhagic testes by gross examination. ↓ weight of the gonads, the accessory sex	
		haemorrhagic testes by gross examination. \downarrow weight of the	
		haemorrhagic testes by gross examination. ↓ weight of the gonads, the accessory sex	
		haemorrhagic testes by gross examination. ↓ weight of the gonads, the accessory sex organs, and the muscle Levator ani-bulbocavernosus (5 months	
		haemorrhagic testes by gross examination. ↓ weight of the gonads, the accessory sex organs, and the muscle Levator ani-bulbocavernosus (5 months old offspring) . The chemicals	
		haemorrhagic testes by gross examination. ↓ weight of the gonads, the accessory sex organs, and the muscle Levator ani-bulbocavernosus (5 months old offspring) . The chemicals investigated could be clustered	
		haemorrhagic testes by gross examination. ↓ weight of the gonads, the accessory sex organs, and the muscle Levator ani-bulbocavernosus (5 months old offspring) . The chemicals	

Rat, Wistar, 3 males/group	<i>In vivo</i> study: <i>gavage</i> 2 consecutive days, 6-8 weeks old 2,000 mg/kg bw Exposure to phthalate	profiles of reproductive effects. DBP and DEHP induced a higher incidence of testicular and epididymal abnormalities, including atrophy and agenesis, which is not generally found with flutamide or Vinclozolin even at high dose levels. <i>In vivo</i> study: The changes observed were present in all animals in each group. Leydig cells stained more densely than other cell types, generally displaying an elongate	Jones et al., 1993
	(diethyl phthalate) Sacrifice 24 hours after the final dose. <i>In vitro</i> study: Primary cultures of Leydig cells incubated with 1,000 μM monoester for 2 hours. The corresponding monoesters were investigated <i>in vitro</i> : MEHP, MPP, MOP, and MEP.	several subtle but highly significant alterations were produced. DEHP administration also resulted in slight rarefaction or vacuolation of a few Sertoli cells in seminiferous tubules, while treatment with DOP or DEP produced no change in seminiferous tubular structure or Leydig cell morphology. Exposure to DPP produced the most severe changes in Sertoli cells but no changes in Leydig cells.	
		In vitro study: Phthalate esters exerted a direct effect on Leydig cell structure and function as determined by testosterone output with correlation of the <i>in vitro</i> and <i>in</i> vivo effects of MEHP and DEHP, respectively. MEHP and MPP produced marked effects on structure and function including decreased LH- stimulated secretion of testosterone from Leydig cells incubated with MEHP while MOP caused decreased secretion and MEP was without effect.	

GD: gestation day, PND: post natal day.